Abstract:
The present invention discloses a method for transmitting a frame sequence number and a node B and a serving radio network controller, which method comprises: a node B receiving a protocol data unit from a carrier and de-multiplexing the protocol data unit into media access control data streams; the node B inserting a carrier symbol into a carrier indicator field of an enhanced-dedicated transport channel data frame and generating a frame sequence number for every the enhanced-dedicated transport channel data frame transmitted on the carrier; and the node B transmitting the media access control data streams to a serving radio network controller SRNC by using the enhanced-dedicated transport channel data frame. By virtue of the present invention it achieves that the SRNC is capable of obtaining the information regarding network layer data transmission in dual-carrier situation so as to detect the loss of data frames.
Abstract:
The present invention provides a Hybrid Automatic Repeat Request (HARQ) failure indication method, an HARQ failure indication data frame and a Serving Node B thereof. In the above method, when the decoding of the received Enhanced Dedicated Transport Channel (EDCH) data frame is unsuccessful and the condition of sending HARQ failure indication is satisfied currently, Serving Node B sends an HARQ failure indication data frame to the Service Radio Network Controller (SRNC). Wherein, a carrier identifier which indicates the carrier on which the HARQ failure happens is carried in the HARQ failure indication data frame. According to the present invention, when the SRNC receives the HARQ failure indication data frame, SRNC can perform Outer Loop Power Control (OLPC).
Abstract:
A method and UE for setting a Happy bit on an uplink enhanced dedicated control channel are provided. The method includes: a UE transmits an uplink Enhanced Dedicated Channel (E-DCH) on more than one carrier, when criterion 1 and criterion 2 are met, the UE sets the Happy bit which is to be transmitted to a network side as “UNHAPPY” to indicate that the UE doesn't satisfy with the current serving grant. The disclosure optimizes the processing process of power control and resource scheduling, reduces call-drop rate, so that the performances of the UE and the NodeB are optimized.
Abstract:
The present invention discloses a method for sending/acquiring a SIR target value and a Serving Radio Network Control. The above sending method comprises: a Serving Radio Network Control (SRNC) sending an outer loop power control frame to a Node B, wherein the outer loop power control frame carries carrier identification information and a SIR Target value of a carrier corresponding to the carrier identification information. The above acquiring method comprises: a Node B receiving an outer loop power control frame sent by a Serving Radio Network Control (SRNC) and acquiring carrier identification information and a SIR Target value of a carrier corresponding to the carrier identification information from the outer loop power control frame; and the Node B updating a SIR Target value of the carrier corresponding to the carrier identification information to be the SIR Target value. By means of the present invention, uplink N carrier HSUPA functions can be ensured to be performed correctly and reasonably, and the Node B is enabled to perform power control to independent uplink transmission in an N carrier system.
Abstract:
A method for transmitting power offset information of a secondary common pilot channel and a radio network control, including: after a drift radio network control receives request information sent by a serving radio network control and used for requesting the drift radio network control to feed back power offset information of respective secondary common pilot channels of managed target primary and secondary carrier cells, the drift radio network control setting following kinds of information elements with reference to MIMO pilot modes used respectively by target primary and secondary carrier cells: power offset information of a secondary common pilot channel of a single carrier cell, power offset information of a secondary common pilot channel of a primary carrier cell, and power offset information of a secondary common pilot channel of a secondary carrier cell, and feeding back set information elements to the serving radio network control through an IUR.
Abstract:
A method for determining a slot format of an F-DPCH is disclosed in the present disclosure, including: a Node B using No.0 slot format of the F-DPCH as the slot format for transmitting information over the F-DPCH when detecting that a UE in CELL_FACH state or idle mode is using an E-DCH. An apparatus for determining a slot format of an F-DPCH is also disclosed. The present disclosure ensures that the slot format of the F-DPCH transmitted by the Node B is identical with that of the F-DPCH received by the UE, so that the UE can correctly receive the TPC bits carried on the F-DPCH, and thus the UE can use the TPC bits to implement inner loop power control. Therefore, the Node B can correctly receive the data information transmitted over an E-DPDCH.
Abstract:
A method for transmitting multi-carrier enhanced dedicated channel data, comprising a first sending step and a first receiving step, wherein the first sending step comprises: when a node B only has an enhanced dedicated channel cell of a single carrier frequency layer in the multi-carrier, setting “uplink multiplexing information” in an enhanced dedicated channel uplink data frame as “null” and sending it to a serving radio network controller; the first receiving step comprises: the serving radio network controller receiving the enhanced dedicated channel uplink data frame sent by the node B of sender which only has the enhanced dedicated channel cell of a single carrier frequency layer in the multi-carrier, and distinguishing which carrier in the multi-carrier is the carrier for receiving data carried in the enhanced dedicated channel uplink data frame based on carrier identifier information corresponding to carrier frequency of the enhanced dedicated channel cell recorded.
Abstract:
The invention provides a method and a device for confirming a downlink inner loop power control mode by a Node B in an idle mode and in a CELL_FACH state. The method includes that: when the Node B detects that there is User Equipment (UE) using an E-DCH in the idle mode or in the CELL_FACH state, confirming to use a mode 0 to receive Transmit Power Control (TPC) bit information sent on a Dedicated Physical Control Channel (DPCCH) by the UE, and performing downlink inner loop power control on a Fractional Dedicated Physical Channel (F-DPCH). The method and device provided in the invention enable the inner loop power control mode for the F-DPCH made by the Node B to be consistent with the TPC bit information mode fed back by the UE, and enable the F-DPCH to use proper transmit power to transmit.
Abstract:
A method for processing a transmission gap pattern sequence is disclosed. A terminal or a Node B controls an initiation of a transmission gap pattern sequence. The terminal or the Node B performs an operation of initiating a new transmission gap pattern sequence by way of superimposing on currently initiated transmission gap pattern sequences or by way of clearing all currently initiated transmission gap pattern sequences. The terminal or the Node B controls a stop of the transmission gap pattern sequence. The terminal or the Node B performs the operation of stopping a transmission gap pattern sequence by way of stopping a specified transmission gap pattern sequence or by way of stopping all currently initiated transmission gap pattern sequences. A system for processing a transmission gap pattern sequence is disclosed. With the method and the system, the time for initiating a compressed mode is delayed and the duration of the compressed mode is reduced, thus system capacity and user throughput are improved.
Abstract:
A method and a system for controlling a compressed mode in a macro-diversity state are provided by the disclosure, wherein the method comprises that a terminal and a serving node B determine a compressed mode, wherein the compressed mode comprises: transmission gap pattern sequence information; the terminal and the serving node B start or stop the compressed mode, the terminal or the serving node B indicates a current compressed mode state to a related node B, and the related node B performs compressed mode operation according to the current compressed mode state. According to the disclosure, the problem that the execution state of the compressed mode of the terminal and a network side cannot be synchronized is solved, normal operation of the compressed mode of the terminal is guaranteed, and the service quality of the terminal and the performance of the system are improved.