摘要:
Disclosed is an apparatus for precisely measuring optical characteristics of an eye to be examined, particularly an ophthalmologic characteristic measuring apparatus capable of observing a front portion of the eye as well as measuring optical characteristic of an irregular astigmatism component. The apparatus includes a first illuminating optical system, a first receiving optical system, a first converting member, a first light receiving unit, a second illuminating optical system, a second light receiving optical system, a second light receiving unit, and an arithmetic unit. The first illuminating optical system illuminates convergently a portion near the center of curvature of the cornea of an eye to be examined with first illuminating light rays emitted from a first illuminating light source. The first receiving optical system receives the first illuminating light rays reflected back from the cornea of the eye. The first converting member converts the reflected light rays into at least seventeen beams. The first light receiving unit receives a plurality of light beams converted by the first converting member. The second illuminating optical system projects an index having a specific pattern on the cornea of the eye with second illuminating light rays emitted from a second illuminating light source. The second light receiving optical system receives light rays reflected back from the cornea of the eye. The second light receiving unit receives the second illuminating light rays from the second light receiving optical system. The arithmetic unit determines the shape of the cornea near the center of the eye on the basis of an inclination angle of the light rays obtained by the first light receiving unit, and determines the shape of the cornea at the periphery of the eye on the basis of a position of the second light receiving unit, at which position the second light receiving unit receives the second illuminating light rays.
摘要:
There is provided a Shack-Hartmann wavefront sensor which can repetitively perform a measurement at high speed and at short measurement intervals. An illuminating optical system includes a first polarizing optical member to alternately change a polarization condition to a first polarized light or a second polarized light, and illuminates a pulse light from a laser light source part to an ocular fundus of a subject eye through a first polarizing optical member. A light receiving optical system includes a second polarizing optical member to select each polarized light component of the reflected light from the subject eye illuminated according to the polarization condition of the first polarizing optical member, and a first and a second light receiving parts to alternately receive the reflected light of the selected polarized light component. An ophthalmologic measuring apparatus measures the wavefront aberration of the subject eye at short intervals based on the output of the first and the second light receiving parts.
摘要:
Light from a light source is divided into S-polarization and P-polarization light. The P-polarization light is incident to a retinal illumination system for high-power image and the S-polarization light is incident to a retinal illumination system for low-power image. These lights are set center illumination and ring illumination by aperture diaphragms. Reflection light flux from a cornea under the high-power retina illumination light passes through the center of a perforated mirror, and thus light reflected from the retina and the perforated mirror is received through a high-power optical system to achieve an excellent retinal image having no flare. Likewise, reflection light flux from the cornea under the low-power retina illumination light is reflected from the perforated mirror, and thus light reflected from the retina and passing through the center of the hole is received through a low-power optical system to achieve an excellent retinal image having no flare.
摘要:
A pulse light source section outputs a plurality of pulse light according to the exposure timing of a retina imaging device. A retina illumination system illuminates the retina of an eye under measurement with the pulse light. A wavefront compensation system illuminates the eye and measures aberrations from a light reflected from the eye. The wavefront compensation system uses a wavefront compensation device and other components to compensate to cancel out measured aberrations. A retina imaging device receives a light which was reflected from the retina and of which the aberrations have been compensated for. A retina observation system forms an image of the retina on the retina imaging device with a light which was reflected and compensated. With the plurality of pulse light output from the pulse light source section, a plurality of consecutive retina images are obtained.
摘要:
It is possible to improve the quality of an image of an eyeground, thereby acquiring an optimal image. An eyeground observation system (3) acquires an eyeground image via a compensation optical section (70) correcting the image of the eyeground obtained by illumination of an eyeground illumination system (2). A wave front correction system (1) measures wave front measurement data including a wave front aberration of the eye to be checked and/or aberration to be corrected, thereby acquiring the optical characteristic of the eye to be checked. An image data formation section (14-2) performs simulation of viewing at the eyeground, thereby calculating the simulation image data or MTF data. A correction amount decision section (14-3) decides a correction amount according to a voltage change template stored in a memory (14-4) and outputs it to a control section (15). Moreover, the correction amount decision section (14-3) uses the simulation result for a plurality of voltage change templates so as to calculate a value indicating the matching degree of the pattern or MTF data corresponding to a spatial frequency of cells of the eyeground and decide an appropriate correction amount
摘要:
It is possible to improve the quality of an image of an eyeground, thereby acquiring an optimal image. An eyeground observation system (3) acquires an eyeground image via a compensation optical section (70) correcting the image of the eyeground obtained by illumination of an eyeground illumination system (2). A wave front correction system (1) measures wave front measurement data including a wave front aberration of the eye to be checked and/or aberration to be corrected, thereby acquiring the optical characteristic of the eye to be checked. An image data formation section (14-2) performs simulation of viewing at the eyeground, thereby calculating the simulation image data or MTF data. A correction amount decision section (14-3) decides a correction amount according to a voltage change template stored in a memory (144) and outputs it to a control section (15). Moreover, the correction amount decision section (14-3) uses the simulation result for a plurality of voltage change templates so as to calculate a value indicating the matching degree of the pattern or MTF data corresponding to a spatial frequency of cells of the eyeground and decide an appropriate correction amount
摘要:
A refraction measuring instrument for measuring the refraction of an eye to be examined while the subject is viewing an external object in a more natural posture. A measuring light beam from a light source 21 is reflected from a mirror 25, shaped into a beam with a ring cross section, directed to a free curved surface prism 31 along an optical axis O2, reflected from a surface 31b and a beam splitting surface 31a, guided to an eye E along an optical axis O1 together with the visible light from outside the instrument, and form a ring pattern on the fundus F. The measurement beam reflected from the fundus F is received by a CCD 23 through the free curved surface prism 31 and a prism 22, and a ring pattern is imaged. A calculation control device 4 analyzes the imaged ring pattern and calculates the sphericity, the degree of astigmatism, and the astigmatic axis angle. For measurement, the subject A wears the refraction measuring instrument 1 on the head H through a wearing section 1a.
摘要:
The present invention relates to ophthalmological apparatuses more specifically intends to provide an ophthalmological apparatus for forming a sectional image signal of a measurement object part within the subject's eye. A luminous flux separating means separates light from a first fiber into a reference optical fiber and a measuring optical fiber and a reference reflecting mirror reflects light from the reference optical fiber, and a detecting optical fiber combines light emitted from the measuring optical fiber and reflected from an eyeground of the subject's eye and led to the measuring optical fiber and light reflected by the reference reflecting mirror and led to the reference optical fiber and leads the combined light to a light receiver, and a light reflecting member detachably arranged in the optical path leads light from the light outgoing end surface of the measuring optical fiber arranged in the conjugate position to the eyeground of the subject's eye onto one optical path of the eyeground illumination system or the eyeground observation/photographing optical system.
摘要:
Light from a light source is divided into S-polarization and P-polarization light. The P-polarization light is incident to a retinal illumination system for high-power image and the S-polarization light is incident to a retinal illumination system for low-power image. These lights are set center illumination and ring illumination by aperture diaphragms. Reflection light flux from a cornea under the high-power retina illumination light passes through the center of a perforated mirror, and thus light reflected from the retina and the perforated mirror is received through a high-power optical system to achieve an excellent retinal image having no flare. Likewise, reflection light flux from the cornea under the low-power retina illumination light is reflected from the perforated mirror, and thus light reflected from the retina and passing through the center of the hole is received through a low-power optical system to achieve an excellent retinal image having no flare.
摘要:
An eye-anterior-part observation system receives light reflected from an eye anterior part of the eye under measurement illuminated by an eye-anterior-part illumination light source. A movement-distance calculation section measures the displacement of the eye from an eye anterior image by the eye-anterior-part observation system. A wavefront compensation device compensates the wavefront of light reflected or transmitted. A wavefront-measurement section projects light on the eyeground, and receives light reflected from the eyeground through the wavefront compensation device. A calculation apparatus measures wavefront aberrations, based on the measured displacement of the eye and a light-receiving signal by the wavefront-measurement section. A wavefront-compensation-device control apparatus generates a control signal based on the wavefront aberration, and outputs to the wavefront compensation device to compensate the wavefront. A stage with a motor moves the wavefront compensation device in a direction transversing the optical axis of the reflected light, based on the displacement of the eye.