摘要:
The present invention is related to microporous polyolefin films that may be used for battery separators and the methods of manufacturing the same. These microporous polyolefin films are characterized by being manufactured in a method comprising the steps of melt-extruding a composition, comprised of 20-50 weight % of a resin composition, comprised of 90-98 weight % of polyethylene (Component I) having a weight average molecular weight of 2×105˜4×105 and less than 5 weight % of molecules of which molecular weight is less than 1×104 and less than 5 weight % of molecules of which molecular weight is greater than 1×106, and 2-10 weight % of polypropylene (Component II) of which weight average molecular weight is 3.0×104˜8.0×105 and the peak of the melting point is higher than 145° C., and 80-50 weight % of a diluent (Component III), to mold in the form of sheets; stretching the above sheets to the form of films; extracting the diluent from the above films; and heat-setting the above films. They are also characterized by having a puncture strength of greater than 0.14 N/μm, Darcy's permeability constant of greater than 1.5×10−5 Darcy, shut-down temperature of microporous films of lower than 140° C., and melt-down temperature of higher than 160° C. They can enhance the performance and stability of batteries using them as well as the productivity of microporous films owing to their high thermal stability and superior extrusion compoundability and physical properties.
摘要:
The present invention discloses a microporous high-density polyethylene film for a battery separator, and process for preparing the same. The microporous high-density polyethylene film according to the present invention comprises of high-density polyethylene with weight average molecular weight of 2×105˜4×105, containing not more than 5 wt % of molecules with molecular weight of 1×104 or less and not more than 5 wt % of molecules with molecular weight of 1×106 or more, and has the properties of puncture strength of 0.22 N/μm or more, Darcy's permeability constant of 1.8×10−5 Darcy or more, and shrinkage of 4% or less in machine and transverse direction, respectively. Particularly, the microporous high-density polyethylene film has excellent extrusion-compoundability and stretchability with high productivity and enhances performances and stability of the battery using the film.