Abstract:
Systems and methods are disclosed herein to a power factor adjustor comprising: a power factor measurement unit configured to measure the power factor on an input line to a load and generate a power factor correction signal based on the measured power factor; and a power factor adjustment unit connected to the power factor measurement unit comprising: a fixed capacitor connected in series to a first switching device; and an adjustable element having a variable capacitance connected in parallel to the fixed capacitor and in series to a second switching device, wherein the overall capacitance of the power factor adjustment unit is adjusted by adjusting the capacitance of the adjustable element or by toggling the first and second switching devices in response to the power factor correction signal.
Abstract:
In one example embodiment, a power control system includes one or more stages, a plurality of primary busbars operatively coupled to the one or more stages, and an intelligent controller operatively coupled to the one or more stages. Each of the one or more stages is configured to generate a lead current when coupled in parallel to a power distribution system, and at least one of the one or more stages comprises a notch filter and a power tank circuit. Each of the plurality of primary busbars is configured to carry one phase of a multiple phase power signal. The controller is configured to determine when to switch each of the one or more stages one and off, to count a number of times each stage is switched on, and to track one or more electrical parameters of the power distribution system, power control system, or both.
Abstract:
A leakage current masking device for use with a circuit includes at least one inductive load device coupled to the circuit and configured to supply an inductive load to the circuit, and a processor communicatively coupled to the inductive load device. The processor is configured to receive a signal representative of a current through the circuit, calculate a capacitive leakage current component of the current, and cause the inductive load device to adjust the inductive load supplied to the circuit to reduce the capacitive leakage current component.
Abstract:
A first SVC is connected to a first bus. A first SVC control unit controls the first SVC. A first fluctuation-component-voltage generating unit includes a voltage reference circuit that outputs a voltage reference value. A second SVC is connected to a second bus. A second SVC control unit controls the second SVC. A second fluctuation-component-voltage generating unit includes a first-order-lag control block with limiter that generates a comparative voltage that follows a bus voltage of the second bus with a predetermined time lag characteristic and is limited within a predetermined range. An impedance value XS1 of slope reactance of the first SVC is set smaller than impedance value XS2 of slope reactance of the second SVC.
Abstract:
A capacitor bank unit includes three capacitor banks that have respective capacitances that are multiples of a basic capacitance in accordance with a number sequence of the n-th power of 2. One of the capacitor banks has the basic capacitance, remaining two of the capacitor banks includes two subbanks each. The capacitance of a subbank is set to a capacitance that is a multiple of the basic capacitance in accordance with a number sequence of the m-th power of 2. When any one of the capacitor banks fails, each of capacitor banks following the failed capacitor bank substitutes for a capacitor bank located immediately before itself.
Abstract:
A power generating system wherein a variable speed turbine is mounted on top of a tower or tethered underwater. The reactive component of turbine generated electrical power is corrected automatically through electronic switched power-factor capacitor banks that are divided into sub-system modules coupled to a central turbine park sub-station. The sub-system modules are of a fixed size and are easily adaptable to different turbine generator types, sizes and groupings. By employing SCR switched power factor capacitors grouped in sub-system modules of fixed size, coupled to a central turbine park sub-station, the converter allows fast, real time control of the utility interconnected power line voltage or power factor.
Abstract:
The invention features a system and approach for minimizing the step voltage change as seen by the utility customer as well minimizing transients imposed on the fundamental waveform of a normal voltage carried on a utility power network when a reactive power source (e.g., capacitor bank) is instantaneously connected to the utility power. The reactive power source is adapted to transfer reactive power of a first polarity (e.g., capacitive reactive power) to the utility power network. The system includes a reactive power compensation device configured to transfer a variable quantity of reactive power of a second, opposite polarity to the utility power network, and a controller which, in response to the need to connect the shunt reactive power source to the utility power network, activates the reactive power compensation device and, substantially simultaneously, causes the shunt reactive power source to be connected to the utility power.
Abstract:
The novel circuit arrangement is used for the static generation of a variable electric output, as is common in static reactive-power compensation systems. According to the invention, a voltage is applied to a consumer, i.e. to a capacitor and/or an inductor, and a transformer (T) has at least two power-control windings (W1, W2) in a secondary circuit, said windings being connected electrically in series via bridge circuits (B1, B2). In their branches, the bridge circuits contain static switches (BSS1 . . . 4) in an inverse-parallel connection, said switches can be selectively connected or disconnected.
Abstract:
An automatic power factor correction system, for an electrical power installation drawing varying levels of reactive power, measures an electrical parameter of the power drawn by a load of a power installation using a power measurement integrated circuit, the parameter being capable of indicating a level of reactive power drawn by the load, and couples a combination of capacitors to the power line to compensate for the level of reactive power indicated by the electrical parameter measured. In a first embodiment of the invention, the combination of power factor compensating capacitors is calculated from a signed value of reactive power drawn by the load. In a second embodiment, the compensating capacitor combination is calculated from a value of power factor for the load which is calculated from a ratio of an active power value to an apparent power value.
Abstract:
The present invention provides diode bridge and a parallel type, capacitor based, phase to phase surge suppressor. The suppressor acts to suppress transient energy as soon as the spike exceeds the prevailing peak of the ac waveform. The system dissipates the spike by drawing current through the system impedance between the suppressor sand the source of the surge.