Abstract:
An agricultural vehicle includes a chassis; a header carried by the chassis and including a cutter mechanism, the header being adjustable in a vertical direction; a swath roller carried by the chassis behind the header; a roller actuator connected to the swath roller and configured to adjust the swath roller in the vertical direction; and a controller coupled to the roller actuator. The controller is configured for: detecting when the header raises in the vertical direction; recording a header raising point where the header raises; determining when the swath roller reaches the header raising point; and signaling the roller actuator to raise the swath roller when the swath roller reaches the header raising point.
Abstract:
A feed section for a multi-row sugarcane harvester comprises a first feed train configured to advance a first mat of sugarcane received from a first row of sugarcane, a second feed train configured to advance a second mat of sugarcane received from a second row of sugarcane, and a third feed train. The first and second feed trains merge into the third feed train. Each of the first feed train and the second feed train comprises a first feed roller and a second feed roller, each of which has an axis of rotation. With respect to the first feed train, the axes of rotation of the first and second feed rollers are positioned at different acute angles relative to a fore-aft axis of the feed section.
Abstract:
A picking apparatus having at least one holder movable in a working direction. The holder has at least one conveying device with a front gathering region. The produce bearing plants come in contact with the conveying device in the front gathering region. The conveying device is operable to gather and transport plants in at least one conveying direction. The conveying direction extend in a straight or substantially straight line and transverse or substantially transverse to the working direction. The picking apparatus also has a picking gap defined behind the conveying device, wherein the plants are guided through the picking gap while separating the produce.
Abstract:
An agricultural harvester includes a chassis, with a separating system and a residue handling system each carried by the chassis. The separating system receives a flow of crop material producing a chaff flow and a residue flow. The residue handling system receives the chaff flow and the residue flow from the separating system, and the residue handling system includes a residue chopper operationally positioned immediately above a residue spreader. The residue spreader is oriented to receive the chaff flow and the residue flow chopped by the residue chopper.
Abstract:
A windrow merger having at least one pickup head member, the at least one pickup head member being selectively shiftable between a working disposition and a transport disposition and having at least a first pivot for shifting the at least one pickup head member from the substantially vertical transport disposition to a substantially horizontal intermediate disposition and at least a second pivot for shifting the at least one pickup head member from the substantially horizontal intermediate disposition through an arc to the working disposition.
Abstract:
A combine unload control system having a grain tank for storing grain and at least one auger for unloading grain from the grain tank. The control system also includes a first auger cover proximate to the at least one auger, having one or more first auger cutouts disposed on a portion of the first auger cover and a second auger cover proximate to the at least one auger and having one or more second auger cutouts disposed on a portion of the second auger cover. The control system further includes a controller configured to control amounts of grain to pass through the one or more first auger cutouts and the one or more second auger cutouts and flow to the at least one auger by causing the first auger cover and the second auger cover to move relative to each other.
Abstract:
A forage harvester for harvesting crop is described. The harvester comprises a header for harvesting crop and providing the crop to a cutter drum of the harvester for processing the crop, and a wear plate positioned in the vicinity of the cutter drum to guide the cut crop towards a discharge section of the harvester. The harvester further comprises a flow generator for generating a fluid flow along a surface of the wear plate facing the cutter drum or along an inner discharge surface of the discharge section, in order to facilitate a transport of the cut crop towards an outlet of the discharge section.
Abstract:
A wide cut harvesting platform includes a rotary cutter bar having right- and left-hand outer and inner cutting units having respective inner and outer cutting discs at its opposite ends rotating in appropriate opposite directions for conveying cut crop from outer ends of the cutter bar to a central crop discharge path leading to a crop conditioning arrangement extending across the path. A first embodiment includes horizontal, right- and left-hand converging augers mounted so as to diverge forwardly above inner and outer cutting discs at the opposite ends of the cutter bar from locations at opposite sides of the discharge path and forward of the conditioner arrangement. A second embodiment includes first and second forwardly diverging augers like the first embodiment but being shorter and respectively terminating outwardly adjacent right- and left-hand converging drums respectively mounted to, and for rotating together with the right- and left-hand outer cutting discs.
Abstract:
The present invention relates generally to a system, apparatus, and method for cutting, windrowing, and baling material in a single pass. More specifically, the present invention provides an assembly that connects a windrower and a baler in series and a mechanism for conveying material, such as crop material and/or material-other-than-grain, from the windrower to the baler directly, without discharging the material onto the ground after it has passed through the windrower.
Abstract:
A flexible reel (100) for an agricultural harvesting head (115) includes a plurality of reel sections (102, 104, 106) coupled together with flexible joints (210), wherein bats (206, 218) mounted on one reel section (102, 104, 106) overlap and interleave with the bats (206, 218) of an adjacent reel section (102, 104, 106).