Abstract:
A flexible reel (100) for an agricultural harvesting head (115) includes a plurality of reel sections (102, 104, 106) coupled together with flexible joints (210), wherein bats (206, 218) mounted on one reel section (102, 104, 106) overlap and interleave with the bats (206, 218) of an adjacent reel section (102, 104, 106).
Abstract:
A draper platform (100) for an agricultural combine that has a first frame section (104) with a first endless conveyor belt (132, 126) wrapped around a first inner roller (254, 258) and a first outer roller (251), the first outer roller (251) having a first axis of rotation; a second frame section (102, 106) supported on the first frame section (104) having a second endless conveyor belt (124, 130) wrapped around a second inner roller (249) and a second outer roller (251), the second inner roller (249) having a second axis of rotation; a first pivot joint (110, 114) coupling the first frame section (104) to the second frame section (102, 106), such that the second frame section (102, 106) pivots with respect to the first frame section (104) about an axis (108, 112) that extends generally parallel to the first outer roller (251) and the second inner roller (249), and in which the first pivot joint (110, 114) maintains a constant distance between the first outer roller (251), and the second inner roller (249) when the second frame section (102, 106) pivots with respect to the first frame section (104) about the axis (108, 112).
Abstract:
An agricultural combine includes a supporting structure. A work assembly is coupled to the supporting structure. The work assembly has a plurality of components to assist in the performing of crop processing operations. The work assembly is configured to define an air stream path. The work assembly has at least one rotary component that generates an air stream that flows through the air stream path to aid in crop processing in the work assembly. A fluid system is configured to circulate a fluid. The fluid system includes a fluid cooler that is positioned at a location in the air stream path to provide cooling of the fluid.
Abstract:
Within an electronic shelf, physically separating or isolating in a front to rear direction keying elements from connector alignment elements to provide a separation distance, minimizes the undesirable interaction that may occur between keying elements and connector alignment elements due to tolerance effects. Worst case manufacturing tolerances with respect to keying elements, for example, no longer influence in any significant way, the co-action of the connector alignment elements. Insertion of circuit packs into respective receiving stations is achieved with less effort since effort is not required to overcome extra frictional forces resulting from the keying elements interacting with the connector alignment elements. The separation distance between keying elements and connector alignment elements is made to be as large as possible so as to minimize the effects of keying elements opposing the repositioning of a circuit pack for connector alignment purposes by the connector alignment elements within a receiving station.
Abstract:
A harvesting machine including a chassis and a cleaning shoe. The cleaning shoe is supported by the chassis. The cleaning shoe includes a frame and at least one grain cleaning element. The frame is moveable in a first plane relative to the chassis. The at least one grain cleaning element is supported by the frame. The at least one grain cleaning element is movable in a second plane different from the first plane.
Abstract:
A method for changing the track of a vehicle (100) having first and second wheels (108, 110) disposed on opposing sides of the vehicle (100) along a line generally perpendicular to the direction of travel of the vehicle, the first and second wheels (108, 110 are supported on first and second wheel supports (114, 116, 204) to permit the track of the first and second wheels (108, 110) to be adjusted, at least one actuator (218, 220) is coupled to at least one wheel of the first and second wheels (108, 110) and is configured to change the toe angle of said first and second wheels (108, 110), and an electronic control unit (402) is coupled to the actuator (218, 220) that is configured to command the actuator (218, 220) to change the toe angle, the method comprising the steps of changing the toe angle of the first and second wheels (108, 110); rolling the vehicle (100) on the first and second wheels (108, 110) over the ground to generate opposing lateral forces on the first and second wheels (108, 110); and applying the opposing lateral forces to the first and second wheel supports (114, 116, 204) to change the track of the first and second wheels (108, 110).
Abstract:
A flexible reel (100) for an agricultural harvesting head (115) includes a plurality of reel sections (102, 104, 106) coupled together with flexible joints (210), wherein bats (206, 218) mounted on one reel section (102, 104, 106) overlap and interleave with the bats (206, 218) of an adjacent reel section (102, 104, 106).
Abstract:
A method for changing the track of a vehicle (100) having first and second wheels (108, 110) disposed on opposing sides of the vehicle (100) along a line generally perpendicular to the direction of travel of the vehicle, the first and second wheels (108, 110 are supported on first and second wheel supports (114, 116, 204) to permit the track of the first and second wheels (108, 110) to be adjusted, at least one actuator (218, 220) is coupled to at least one wheel of the first and second wheels (108, 110) and is configured to change the toe angle of said first and second wheels (108, 110), and an electronic control unit (402) is coupled to the actuator (218, 220) that is configured to command the actuator (218, 220) to change the toe angle, the method comprising the steps of changing the toe angle of the first and second wheels (108, 110); rolling the vehicle (100) on the first and second wheels (108, 110) over the ground to generate opposing lateral forces on the first and second wheels (108, 110); and applying the opposing lateral forces to the first and second wheel supports (114, 116, 204) to change the track of the first and second wheels (108, 110).
Abstract:
An agricultural combine includes a supporting structure. A work assembly is coupled to the supporting structure. The work assembly has a plurality of components to assist in the performing of crop processing operations. The work assembly is configured to define an air stream path. The work assembly has at least one rotary component that generates an air stream that flows through the air stream path to aid in crop processing in the work assembly. A fluid system is configured to circulate a fluid. The fluid system includes a fluid cooler that is positioned at a location in the air stream path to provide cooling of the fluid.
Abstract:
A harvesting machine including a chassis and a cleaning shoe. The cleaning shoe is supported by the chassis. The cleaning shoe includes a frame and at least one grain cleaning element. The frame is moveable in a first plane relative to the chassis. The at least one grain cleaning element is supported by the frame. The at least one grain cleaning element is movable in a second plane different from the first plane.