摘要:
The present invention provides active convection cooling through micro channels within or adjacent to a bond coat layer applied to the trailing edge of a turbine engine high pressure airfoil. When placed adjacent to or within a porous TBC, the micro channels additionally provide transpiration cooling through the porous TBC. The micro channels communicate directly with at least one cooling circuit contained within the airfoil from which they receive cooling air, thereby providing direct and efficient cooling for the bond coat layer. Because the substrate includes an actively cooled flow path surface region that can reduce the cooling requirement for the substrate, the engine can run at a higher firing temperature without the need for additional cooling air, achieving a better, more efficient engine performance. In one embodiment, a metallic bond coat is added to an airfoil with pressure side bleed film cooling slots. The bond coat is grooved such that the grooves are structured, with at least one structured micro groove communicating with at least one cooling fluid supply contained within the airfoil. A TBC layer is applied, using a shadowing technique, over the structured grooves, resulting in the formation of hollow micro channels for the transport of the cooling fluid. In different embodiments, the location of the structured grooves, hence, the resulting micro channels are placed within the airfoil substrate at the substrate/bond coat interface or within the TBC layer.
摘要:
The interior of a gas turbine moving blade is sectioned by a rib into cooling passage portions. Cooling air enters one of the cooling passage portions and turns to flow into the other cooling passage portion. A stagnation area occurs in an end corner portion of the one cooling passage portion, but a cooling hole is provided so that air flow comes outside of the blade through the cooling hole, and thus cooling air flow occurs thereat. Also, a separation area occurs in a tip end portion of the rib due to separation of air flow, but another cooling hole is provided so that air flow comes outside of the blade and cooling air flow occurs thereat. Further, in a gas turbine moving blade having turbulators provided in multi-stages on a cooling passage inner wall, a film cooling hole structure for eliminating separation of cooling air flow between the turbulators is also provided.
摘要:
The present invention provides for cooling the squealer tip region of a high pressure turbine blade used in a gas turbine engine comprising coating the squealer tip with a metallic bond coat. Micro grooves oriented in the radial direction are fabricated into the airfoil on the interior surface of the squealer tip above and substantially perpendicular to the tip cap. A micro groove oriented in the axial direction is fabricated along the joint corner between the squealer tip side wall and the, tip cap to connect and act as a plenum with all of the micro grooves oriented in the radial direction. Tip cap cooling holes are drilled through the tip cap and connected to the micro groove that ultimately forms a plenum. TBC ceramic is then deposited on both blade external surfaces and the tip cavity, forming micro channels from micro grooves as a result of self shadowing. In this manner, cooling fluid passes from a cooling fluid source through the tip cap holes and into the plenum created by the micro channel, subsequently passing into the micro channels that are oriented in the radial direction. Cooling fluid is thereby directed through the micro channels to cool the squealer, exiting in the vicinity of the tip. Since the TBC is porous, some of the cooling fluid will also flow through the TBC to provide transpiration cooling. The present invention further comprises both the cooled blade and squealer tip region formed by the foregoing methods and the blade and squealer tip with the micro channels for cooling the squealer tip.
摘要:
A closed internal cooling circuit for a gas turbine bucket includes axial supply and return passages in the dovetail of the bucket. A first radial outward supply passage provides cooling medium to and along a passageway adjacent the leading edge and then through serpentine arranged passageways within the airfoil to a chamber adjacent the airfoil tip. A second radial passage crosses over the radial return passage for supplying cooling medium to and along a pair of passageways along the trailing edge of the airfoil section. The last passageway of the serpentine passageways and the pair of passageways communicate one with the other in the chamber for returning spent cooling medium radially inwardly along divided return passageways to the return passage. In this manner, both the leading and trailing edges are cooled using the highest pressure, lowest temperature cooling medium.
摘要:
A cooling circuit is provided disposed between a first wall portion and a second wall portion of a wall for use in a gas turbine engine, one or more inlet apertures, and one or more exit apertures. The inlet aperture(s) provides a cooling airflow path into the cooling circuit and the exit aperture(s) provides a cooling airflow path out of the cooling circuit. The cooling circuit includes a plurality of first pedestals extending between the first wall portion and the second wall portion. The first pedestals are arranged in one or more rows.
摘要:
A turbine blade includes an integral airfoil, platform, shank, and dovetail, with a pair of holes in tandem extending through the platform and shank in series flow communication with an airflow channel inside the shank. Cooling air discharged through the tandem holes effects multiple, convection, impingement, and film cooling using the same air.
摘要:
In a stationary blade of a gas turbine, the pressure resisting strength can be decreased by using low-pressure cooling air, and effective cooling can be performed by means of a simple construction. An inside shroud 1 and an outside shroud 2 are cooled by cooling air passing through an impingement plate. A trailing edge portion of a blade portion 6, which is thin in shape, is cooled by cooling air flowing in an air passage 10. Part of this air is discharged through a hole 12 on the side of the inside shroud 1 as inside seal air for a combustion gas passage.
摘要:
An apparatus and method for cooling a wall for use in a gas turbine engine is provided that includes a cooling air passage having a plurality of segments connected in series by one or more chambers, an inlet aperture, and an exit aperture. The inlet aperture connects the cooling air passage to one side of the wall. The exit aperture connects the cooling air passage to the opposite side of the wall. Cooling air on the inlet aperture side of the wall enters the cooling air passage through the inlet aperture and exits through the exit aperture.
摘要:
Arrangement of holes for forming a cooling film on a wall (50) which is subjected to a flow of hot gas. Two rows (1, 2) of holes (10, 20) are provided which are arranged adjacent to one another, the diameter (d1) of the upstream holes (10) being smaller than the diameter (d2) of the upstream holes (20). The number of upstream holes (10) is equal to or smaller than the number of downstream holes (20). The use of such an arrangement of holes achieves the formation of an extremely effective cooling film with a simultaneously small consumption of cooling air.
摘要:
In cooling a gas turbine stationary blade, steam and air are used as cooling media, the steam is recovered surely without leakage and used effectively, and the amount of air required for cooling is decreased to provide a margin for combustion air, by which the gas turbine efficiency is improved. A steam cooling section is provided at the rear from the blade leading edge, and an air cooling section is provided at the blade trailing edge. The steam cooling is effected by cooling the blade by the cooling steam flowing in the serpentine flow path having turbulators after impingement cooling of an outside shroud and by impingement-cooling an inside shroud during the cooling process, the cooling steam being led to a recovery section from the outside shroud. On the other hand, the air cooling section consists of an air flow path extending from the outside shroud to the inside shroud and slot cooling at the blade trailing edge. Thus, the stationary blade is cooled by both of the steam cooling section and air cooling section.