摘要:
A component according to an exemplary aspect of the present disclosure includes, among other things, a wall and a vascular engineered lattice structure formed inside of the wall. The vascular engineered lattice structure includes at least one of a hollow vascular structure and a solid vascular structure configured to communicate fluid through the vascular engineered lattice structure.
摘要:
Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
摘要:
Disclosed is an integral single-cast multi wall structure including a very thin wall and a second thin wall. There is a passageway interposed between the pair of walls of the structure, and a high thermal conductivity member extends into said passageways and thermally couples the walls. The high thermal conductivity member increases the heat transfer between the walls of the structure. The present invention further includes a method for casting an integral structure having very thin walls that utilizes the high thermally conductive member in the casting process to hold the pattern and cores in alignment.
摘要:
A gas turbine component that includes a very thin wall. The gas turbine component being of a single-piece, single-cast structure. In one form of the gas turbine component it is formed of a superalloy composition and is capable of withstanding gases impinging upon the walls at temperatures greater than 4000.degree. F.
摘要:
A transpiration-cooled turbine vane has a porous wall and an internal strut with a slidable dovetail connection to the wall to reinforce the wall. The dovetails may be directly on the wall or on a fluid distributing plate bonded to the wall. This fluid distributing plate, if present, or the strut provides for metering flow of cooling air to some areas of the wall.
摘要:
A turbine rotor blade of laminated porous metal cast into a base includes an inner reinforcing layer which has increasing porosity in the direction spanwise of the blades so that the strength diminishes with load in the spanwise direction and the porosity provides for flow of air to the porous blade wall. Pores or relieved areas in some sections of some layers are elongate and disposed with their long dimension spanwise of the blade for increased strength in this direction, in which stress in the blade is greatest.
摘要:
A component according to an exemplary aspect of the present disclosure includes, among other things a wall and a vascular engineered lattice structure formed inside of the wall. The vascular engineered lattice structure defines a hollow vascular structure configured to communicate a fluid through the vascular engineered lattice structure. The vascular engineered lattice structure has at least one inlet hole and at least one outlet hole that communicates the fluid into and out of the hollow vascular structure.
摘要:
A turbine blade includes a hollow airfoil integrally joined to a dovetail. The airfoil includes a perforate first bridge defining a flow channel behind the airfoil leading edge. A second bridge is spaced behind the first bridge and extends from a pressure sidewall of the airfoil short of the airfoil trailing edge. A third bridge has opposite ends joined to the pressure sidewall and the second bridge to define with the first bridge a supply channel for the leading edge channel, and defines with the second bridge a louver channel extending aft along the second bridge to its distal end at the pressure sidewall.
摘要:
High efficiency, thin-walled turbine components such as turbine blade airfoils comprise a superalloy substrate covered by a thin skin. The thin skin may be bonded to the inner spar structure of a turbine blade airfoil by a transient liquid phase bonding process. The inner spar preferably comprises a cast single crystal nickel base superalloy. The thin skin may comprise a single crystal or polycrystalline nickel base superalloy or the like.
摘要:
A perforated sheet for the promotion of film cooling a gas turbine engine comprises two separate layers of laminate material which are placed in superposed abutting relationship. The first layer has a plurality of apertures of given cross-sectional area therein. The second layer also has a plurality of apertures therein which have larger cross-sectional areas than the corresponding apertures in the first layer. The apertures in the first layer are in fluid communication with the apertures in the second layer to form passageways through the perforated sheet. These passageways permit a cooling flow of fluid to pass through the perforated sheet so it can be discharged as a cooling fluid film along the inner surface of the perforated sheet. The apertures in each layer are independently formed to produce the passageways. The apertures can easily be machined to the desired size, shape, and angle to optimize the cooling film effectiveness for any particular application.