Abstract:
A method and apparatus for repairing and/or reinforcing a Boiling Water Reactor (BWR) jet pump riser pipe. The repair includes attaching two collars to the riser pipe using match drilling to drill holes through the collars and the riser pipe and plugging the holes with expandable plugs. Support columns are attached to the collars. Brace supports are slideably attached to the support columns. Gaps between each brace support and its respective collar are then narrowed as ratchet bolts may apply a force that pulls downward on an upper collar and pulls upward on a lower collar, thereby exerting a compression force on the riser pipe. A clamp assembly may also be located between the two collars that applies a hoop force on the riser pipe.
Abstract:
Example embodiment clamps may be used to clamp two components together, with a degree of freedom of motion between the clamped components, including both rotational and translational motion. Example embodiment clamps may clamp a BWR jet pump sensing line to a diffuser as a repair or installation of a sensing line support. Example clamps may include a ball subassembly that holds a component and allows rotation and twisting of the component within the clamp. Example clamps may further include jaws holding the ball subassembly and a biasing element that permits tightening of the clamp.
Abstract:
An auxiliary wedge apparatus configured to couple to the restrainer bracket of a jet pump assembly is described. In one embodiment, the auxiliary wedge apparatus includes a support block configured to couple to the restrainer bracket, and a wedge configured to slidingly couple to a wedge channel in the support block, and to engage the inlet mixer to restore a tight rigid fit-up of the jet pump components. The support block includes a wedge channel having tongues depending from the parallel sides of the channel and a hook shaped portion configured to receive the restrainer bracket. The support block also includes a lock screw to couple the support block to the restrainer bracket. The wedge includes grooves in the parallel sides of the wedge configured to slidingly engage the tongues extending in the wedge channel. The auxiliary wedge apparatus also includes a restraint arm depending from the support block configured to capture the existing set screw in the restrainer bracket to prevent the screw from completely unscrewing.
Abstract:
A replacement jet pump diffuser apparatus and method are described. In one embodiment, the replacement diffuser apparatus includes a conical section, a first cylindrical section, and a second cylindrical section. The conical section is welded to the first cylindrical section, and the first cylindrical section is welded to the second cylindrical section. A V-flange is formed at one end of the second cylindrical section. The assembly further includes an adapter having a V-flange formed at one end. The adapter is secured to the second cylindrical section by a band clamp which compresses the V-flanges into contact. The adapter further includes an engagement flange having a plurality of bores extending therethrough. L-bolts extend through the respective bores in the engagement flange, and each L-bolt includes an L-section and a threaded section. Respective nuts threadedly engage the threaded sections of the L-bolts. The L-section of each bolt contacts a lower surface of the shroud support plate.
Abstract:
A method and a device for minimizing electrostatically enhanced deposition of charged particulates in the jet pump nozzles of operating BWR plants. The jet pump nozzle has an inner conducting surface which is electrically isolated from the main body of the nozzle. An electrical circuit is electrically coupled to the inner conducting surface of the nozzle. The electrical circuit is designed to electrically minimize charged-particle deposition at the nozzle surface exposed to a free-stream electrical potential, using a DC circuit with active element feedback to adjust the surface potential to minimize the net current to the inner conducting surface, thereby minimizing deposition.
Abstract:
Jet pumps and a feed water sparger are disposed in a reactor pressure vessel incorporating a core. A first feed water pipe supplies a portion of feed water to the jet pumps as their driving water. A second feed water pipe connected to the first feed water pipe supplies the remaining portion of the feed water to the feed water sparger. A first feed water heater is disposed in the first feed water pipe downstream of a connecting point of the first feed water pipe and the second feed water pipe. An amount of extracted steam introduced into the first feed water heater is controlled on the basis of a difference in the temperature between feed water flowing through the first feed water pipe and the feed water flowing through the second feed water pipe.
Abstract:
An improved liquid jet pump for water is described in which the water issuing from the jet pump drive nozzle passes into a nozzle mixing chamber where steam is introduced to nozzle outflow. This steam, traveling in the same direction as and converging upon the liquid driving stream, is raised to high velocities. These uncommonly high velocities of steam are attained both as a result of passage through a converging/diverging nozzle and the action of condensation upon the passing liquid stream. The liquid driving stream is supplied at a temperature which promotes immediate condensation of the steam molecules of the high speed steam jet. A process of momentum exchange immediately occurs within the drive nozzle mixing chamber between the high-velocity steam and the parallel-moving slower liquid stream with momentum being transferred from the steam to the liquid driving stream. The liquid driving stream with its enhanced momentum is thereafter exhausted from the nozzle mixing chamber and used conventionally to drive the jet pump. Improved jet pump recirculation system is described for use with current and advanced boiling water nuclear reactors.
Abstract:
An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.
Abstract:
An apparatus for underwater separation of a jet pump beam from the inlet mixer of a jet pump in a nuclear reactor system. The apparatus underwater cuts a retaining piece coupling the beam with the inlet mixer.
Abstract:
A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.