Abstract:
A device for drilling an acoustic component including a drilling head, and the drilling head has a support unit including at least two autonomous drilling cassettes. Each cassette includes at least one drill bit, a stationary frame with respect to the support unit, and a bit support moveable along the main axis (Δ) of the cassette between a retracted position and a deployed position. In particular, each bit support is equipped with a device for sensing the skin of the acoustic component to be drilled allowing to automatically control the drilling depth of the bits of each cassette.
Abstract:
A method for controlling a position of a variable nozzle of an aircraft includes the following steps: setting the variable nozzle in a position P(t0) at a time t0 as a preliminary step; step A in which at each instant ti with 1
Abstract:
A turbojet engine nacelle includes a thrust reversing device having doors that swing to brake a direct gas flow, guiding it through counter-thrust openings, and the inside of each door has, at the front, a cavity receiving a spoiler turned towards the front when this door is open. The nacelle includes a fixed structure upstream from each door supporting a deflection edge that partially covers the cavity. In particular, the fixed structure supports, on each side, counter-thrust openings, a flank disposed in the continuation of the deflection edge and extending behind the cavity, which is incorporated into a leaf of the door.
Abstract:
An actuating assembly for an aircraft engine thrust reverser includes a drive shaft bearing a master pinion; a ball screw bearing a slave pinion engaging with the master pinion; a nut capable of translating over the ball screw as a result of the rotation of the ball screw; an extension tube rigidly secured to the nut and a lock assembly to block the rotation of the drive shaft in a so-called direct jet position of the reverser. The extension tube includes, at its free end, a member for connecting to a portion of the reverser prior to being actuated. In particular, the lock assembly includes an abutment secured to the drive shaft, and a cotter moveable between a locking position and an unlocking position. The reduction ratio (R) between the slave and master pinions is even.
Abstract:
The present disclosure provides a thrust reverser device that is integrated in an aircraft nacelle. Blocking flaps are stored inside a mobile cowl disposed in a downstream section of the nacelle, under deflection cascade assemblies during direct-jet operation of the nacelle. Various devices are provided for executing the passage from direct-jet operation to reverse-jet operation in two stages: the mobile cowl moves in translation towards the downstream end of the nacelle; and each flap is then deployed in the main air flow path.
Abstract:
The present disclosure relates to a nacelle for a dual-flow turbojet engine includes a cold airstream having a non-constant cross-section over the periphery of the nacelle, such that at least one flap is radially offset with respect to the central axis of the turbojet engine, relative to the adjacent flaps. The system for driving the radially offset flaps is suitable for ensuring that the kinematics of the flaps are offset relative to the kinematics of the flaps mounted along the remainder of the periphery of the airstream.
Abstract:
The present disclosure relates to a drilling robot and a method for controlling a drilling robot including a driven mechanical structure allowing to place a drilling tool in a sequence of drillings programmed in terms of position and orientation of the drilling of a part such as a technical skin. The method includes a step of determining the acceleration of the drilling tool at the end of the approach on a drilling position, then also testing a stabilization condition of the drilling tool to finally establish a drilling authorization.
Abstract:
The present disclosure relates to a turbojet engine nacelle equipped with at least one thrust reverser. The thrust reverser includes: two half-cowls forming an outer cowl which is articulated on hinges and translates between closed and open positions, a first actuator to translationally actuate a downstream frame, a second actuator to rotationally actuate each half-cowl, and a lock capable of locking or unlocking the half-cowls relative to one another. In particular, the thrust reverser includes cascades vanes supported at their upstream end by an upstream frame and at their downstream end by the downstream frame, and a connector between the downstream frame and the external cowl. The cascade vanes are enclosed in a shroud formed by a fan casing and a fan cowl.
Abstract:
A turbojet engine nacelle has a thrust reverser device and an actuating system for said thrust reverser device, and the thrust reverser device includes a moving cowl mounted translatably alternating between a closed position and an open position, and a jet nozzle section for gases that extends the moving cowl. In particular, the jet nozzle section includes a nozzle flap mounted movable between a closed position and an open position in which the nozzle flap opens a leakage passage toward the outside of the nozzle section. The actuating system has an actuator shared with the moving cowl and the nozzle flap to activate the translational movement of the moving cowl and to pivot the nozzle flap between three following positions: an idle position, an open position of the nozzle flap and an open position of the moving cowl.
Abstract:
A hydraulic control system of a thrust reverser for a turbojet engine nacelle includes a hydraulic machine fed by a pressure source, which motorizes actuators carrying out the thrust reverser stroke, wherein the hydraulic machine includes a variable displacement.