Abstract:
A method of securing user credentials in a remote repository is provided. In accordance with one embodiment, there is provided a method comprising generating a first private key and a first public key pair from a registered password; generating a second private key and a second public key pair; generating a storage key from the second private key and the first public key; encrypting a set of credentials using the storage key; creating a encrypted credential signature from the encrypted set of credentials and the first private key; and storing the encrypted set of credentials, the encrypted credential signature, and the second public key in the remote repository.
Abstract:
Challenge-response authentication protocols are disclosed herein, including systems and methods for a first device to authenticate a second device. In one embodiment, the following operations are performed by the first device: (a) sending to the second device: (i) a challenge value corresponding to an expected response value known by the first device, and (ii) a hiding value; (b) receiving from the second device a masked response value; (c) obtaining an expected masked response value from the expected response value and the hiding value; and (d) determining whether the expected masked response value matches the masked response value received from the second device. The operations from the perspective of the second device are also disclosed, which in some embodiments include computing the masked response value using the challenge value, the hiding value, and secret information known to the second device.
Abstract:
A method of communicating in a secure communication system, comprises the steps of assembling a message at a sender, then determining a security level, and including an indication of the security level in a header of the message. The message is then sent to a recipient.
Abstract:
Systems and methods for secure communications are provided. In some aspects, a method of signalling an interception time period is described. At least one keying information used by a key management service (KMS) to regenerate a key is stored. A start_interception message is signaled from an administration function (ADMF) to a call session control function (CSCF). A halt_message is signaled from the ADMF to the CSCF.
Abstract:
The present disclosure relates to systems and methods for secure communications. In some aspects, an initiator KMS receives, from an initiator UE, one or more values used in generation of an encryption key, which includes obtaining at least one value associated with a RANDRi. The initiator KMS sends the at least one value associated with the RANDRi to a responder KMS. The responder KMS generates the encryption key using the one or more values.
Abstract:
The present disclosure relates to systems and methods for secure communications. In some aspects, one or more values used to generate an encryption key used to encrypt a packet are stored in a header of the packet. The packet is transmitted with the encrypted data portion in a communication. In some aspects, one or more values used to generate an encryption key are received. The encryption key is regenerated using the one or more values.
Abstract:
In some aspects, an encryption method comprises encrypting a first portion of a message using a first secret key. The first secret key is generated based on the public key of an entity. A one-way function is used to generate a second secret key from the first secret key, and the first secret key is subsequently discarded. A second portion of the message is encrypted using the second secret key. The encrypted first portion of the message and the encrypted second portion of the message are provided to the entity.
Abstract:
A system and method for remote device registration, to monitor and meter the injection of keying or other confidential information onto a device, is provided. A producer who utilizes one or more separate manufacturers, operates a remote module that communicates over forward and backward channels with a local module at the manufacturer. Encrypted data transmissions are sent by producer to the manufacturer and are decrypted to obtain sensitive data used in the devices. As data transmissions are decrypted, credits from a credit pool are depleted and can be replenished by the producer through credit instructions. As distribution images are decrypted, usage records are created and eventually concatenated, and sent as usage reports back to the producer, to enable the producer to monitor and meter production at the manufacturer.
Abstract:
Methods, systems, and computer programs for producing hash values are disclosed. A prefix-free value is obtained based on input data. The prefix-free value can be based on an implicit certificate, a message to be signed, a message to be verified, or other suitable information. A hash value is obtained by applying a hash function to the prefix-free value. The hash value is used in a cryptographic scheme. In some instances, a public key or a private key is generated based on the hash value. In some instances, a digital signature is generated based on the hash value, or a digital signature is verified based on the hash value, as appropriate.
Abstract:
The invention provides a method of verifiable generation of public keys. According to the method, a self-signed signature is first generated and then used as input to the generation of a pair of private and public keys. Verification of the signature proves that the keys are generated from a key generation process utilizing the signature. A certification authority can validate and verify a public key generated from a verifiable key generation process.