Abstract:
A cutting element that includes a substrate; and an outer layer of polycrystalline diamond material disposed upon the outermost end of the cutting element, wherein the polycrystalline diamond material: a plurality of interconnected diamond particles; and a plurality of interstitial regions disposed among the bonded diamond particles, wherein the plurality of interstitial regions contain a plurality of metal carbide phases and a plurality of metal binder phases together forming a plurality of metallic phases, wherein the plurality of metal carbide phases are formed from a plurality of metal carbide particles; wherein the plurality of interconnected diamond particles form at least about 60 to at most about 80% by weight of the polycrystalline diamond material; and wherein the plurality of metal carbide phases represent at least 50% by weight of the plurality of metallic phases is disclosed.
Abstract:
An insert for a drill bit may include a metallic carbide body; an outer layer of polycrystalline diamond material on the outermost end of the insert, the polycrystalline diamond material comprising a plurality of interconnected first diamond grains and a first binder material in interstitial regions between the interconnected first diamond grains; and at least one transition layer between the metallic carbide body and the outer layer, the at least one transition layer comprising a composite of second diamond grains, first metal carbide particles, and a second binder material, wherein the second diamond grains have a larger grain size than the first diamond grains.
Abstract:
The present disclosure provides methods and techniques for determining wear abrasion resistance of superhard components, such as cutters used in down-hole drilling tools. The methods and techniques provided herein produce an efficiency ratio of a superhard component through data obtained from a vertical turret lathe test. The efficiency ratio is the ratio between the volume of a target cylinder removed by the superhard component during the vertical turret lathe test and the normal force applied onto the superhard component by the target cylinder. The efficiency ratio is indicative of the energy efficiency of the superhard component.
Abstract:
An apparatus and method for manufacturing a downhole tool that reduces failures occurring along a bondline between a cemented matrix coupled around a blank. The cemented matrix material is formed from a tungsten carbide powder, a shoulder powder, and a binder material, wherein at least one of the tungsten carbide powder or the shoulder powder is absent of any free tungsten. The blank, which optionally may be coated, is substantially cylindrically shaped and defines a channel extending from a top portion and through a bottom portion of the blank. The absence of free tungsten from at least one of the tungsten carbide powder or the shoulder powder reduces the reaction with iron from the blank, thereby allowing the control and reduction of intermetallic compounds thickness within the bondline.
Abstract:
A method and apparatus for non-destructively determining the wear resistance of an ultra-hard polycrystalline structure after being coupled to a downhole tool using capacitance measurements. The apparatus includes a capacitance measuring device having a positive and negative terminal, a leached component comprising a polycrystalline structure that has been coupled to a downhole tool, a first wire, and a second wire. The first wire electrically couples the positive terminal to a surface of the leached component and the second wire electrically couples the negative terminal to a surface of the downhole tool. The capacitance is measured for the leached component one or more times and compared to a calibration curve that shows a relationship between capacitance values and wear resistance, thereby allowing determination of an estimated wear resistance for the polycrystalline structure.
Abstract:
A thermally stable polycrystalline diamond cutter and method for fabricating the same. The cutter includes a substrate and a cutting table bonded thereto. The cutting table includes a cutting surface, a first beveled edge, a second beveled edge, a side surface, and an opposing surface that is adjacent to the substrate. The first beveled edge extends outwardly at a first angle from the cutting surface towards the substrate. The second beveled edge extends outwardly at a second angle from the first beveled edge towards the substrate. The side surface extends from the second beveled edge to the opposing surface. The cutting table is formed from a polycrystalline diamond structure having interstitial spaces disposed therebetween and a catalyst material disposed within the spaces in an untreated layer and not within a treated layer. The untreated layer includes the entire side surface.
Abstract:
A cleaned component having a polycrystalline structure, a method and apparatus for cleaning a leached component to form the cleaned component, and a method for determining the effectiveness of cleaning the leached component. The cleaned component includes a leached layer that has at least a portion of by-product materials removed. The by-product materials were deposited into the leached layer during a leaching process that formed the leached layer. The apparatus and method for cleaning includes a tank, a cleaning fluid placed within the tank, and at least a portion of the leached layer immersed into the cleaning fluid. Optionally, a transducer emits ultrasonic waves into the leached layer. The method for determining the effectiveness of cleaning includes cleaning the leached component to form the cleaned component, measuring one or more capacitance values of the cleaned component, repeating the cleaning and the measuring until achieving a stable lower limit capacitance value.
Abstract:
An acoustic emissions testing device includes a test cutter including a first surface, an acoustic sensor, an indenter coupled to the first surface, and a load. The load is exerted on the indenter, which transfers the load to the first surface. The acoustic sensor is communicably coupled to the test cutter and detects one or more acoustic events occurring therein. An acoustic emissions testing system includes a data recorder coupled to the testing device. The data recorder records the data from testing device. Based upon the data received, the toughness of the test cutter is objectively determined and can be ranked comparatively to the toughness of other test cutters. The load is ramped up to a peak load, held for a period of time, and then ramped down. Cutters from the same cutter type as the test cutters have similar toughness.
Abstract:
An acoustic emissions testing device includes a testing sample, an acoustic sensor communicably coupled to the testing sample, and a load that is exerted on the sample. The sensor detects one or more acoustic events occurring within the sample. The acoustic transmits data to a data recorder, which includes a processor and storage medium for executing instructions provided by a software residing within the storage medium. Upon executing the instructions on the transmitted data, the toughness of the sample is objectively determined and can be ranked comparatively to the toughness of other samples. The instructions provide for categorizing the data into possible acoustic event points and background data points, interpolating a background noise curve, determining the actual acoustic event points, and calculating the area under each actual acoustic event point. In some embodiments, a graphical representation of the cumulative area for each actual acoustic event point is plotted against the corresponding load.
Abstract:
An acoustic emissions testing device includes a pressurizable chamber, a rock sample, and one or ore acoustic sensors communicably coupled to the rock sample. The chamber includes a first chamber being pressurizable to a first pressure and a second chamber pressurizable to a second pressure. The rock sample is positioned within the pressurizable chamber such that a first portion of the sample is exposed to the first pressure and a second portion of the sample is exposed to the second pressure. The second pressure is increased to a threshold pressure, maintained at the threshold pressure for a time period, and then decreased. The acoustic sensors detect one or more acoustic events occurring within the rock sample. In certain embodiments, one or more of the intensity, the spatial location, and the propagating direction for one or more acoustic events are determinable. The system includes the testing device coupled to a recorder.