Abstract:
An image forming apparatus includes an image bearer, an intermediate transferor, a secondary transferor, a plurality of rotators including a secondary driving rotator, and a detector. The image bearer bears a detection image. The detection image is transferred from the image bearer to the intermediate transferor at a primary transfer position. The secondary transferor is looped around the plurality of rotators and disposed in contact with the intermediate transferor at a secondary transfer position where the detection image is transferred from the intermediate transferor to the secondary transferor. The secondary driving rotator drives the secondary transferor. The detector detects the detection image on the secondary transferor at a detection position. With this configuration, a distance from the secondary transfer position to the detection position on the secondary transferor is an integral multiple of a circumference of the secondary driving rotator.
Abstract:
An image forming apparatus includes a plurality of image bearers, a transfer bias member, and a power source. When the transfer bias member transfers a color toner image onto a recording sheet, a second peak value of a peak-to-peak of a transfer bias, which is smaller than a first peak value of the peak-to-peak in an electrostatic force to move toner from the image bearers or an intermediate transfer body to the recording sheet, is zero or has a first polarity to generate the electrostatic force in a transfer direction to move toner from the image bearers or the intermediate transfer body to the recording sheet. When the transfer bias member transfers a monochromatic toner image including only black toner onto the recording sheet, the second peak value is zero or has a second polarity to generate an electrostatic force in an opposite direction to the transfer direction.
Abstract:
An improved image forming apparatus includes an image bearer, a nip forming member, a transfer power source, and a controller. The controller switches a transfer mode between a first mode to transfer the toner image onto a first type sheet having a surface smoothness higher than a surface smoothness of a second type sheet and a second mode to transfer the toner image onto the second type sheet. The controller controls the transfer power source to output the transfer bias having an opposite-peak duty of greater than or equal to 50% that is a duty on the side of the opposite-peak value in the first mode. The controller controls the transfer power source to output the transfer bias having an opposite-peak duty of less than 50%, which is different from the opposite-peak duty of the first mode, in the second mode.
Abstract:
An image forming apparatus includes a belt-shaped image bearer, a transferer, a guide unit, and a plurality of contact members. The belt-shaped image bearer has an image bearing surface to bear an image thereon. The transferer forms a transfer section between the transferer and the image bearer, to transfer the image onto a recording medium. The guide unit is disposed upstream from the transfer section in a delivery direction of the recording medium, to guide the recording medium toward the transfer section. The plurality of contact members are disposed side by side at positions opposing the guide unit and in contact with a non image bearing surface of the image bearer opposite to the image bearing surface.
Abstract:
An image forming apparatus includes an image bearer, a toner image forming device, a nip forming device, a power source, a controller, and a temperature-and-humidity detector. The toner image forming device forms a toner image on the image bearer. The nip forming device contacts the image bearer to form a transfer nip. The power source outputs a transfer bias, in which an alternating current component is superimposed on a direct current component, to transfer the toner image onto a recording medium interposed in the transfer nip. The temperature-and-humidity detector detects a temperature and humidity. The controller controls the power source to output the transfer bias including the direct current component with a smaller absolute value as at least one of the detected temperature and humidity increases.
Abstract:
A cleaning device includes a cleaner, a casing, and an exit seal. The cleaner is configured to remove toner from a cleaning target. The casing accommodates the cleaner. The exit seal is attached to the casing and has a free end contacting the cleaning target at a position downward from the cleaner in a direction of movement of the cleaning target and an attached end attached to the casing. A space is disposed between a surface of the cleaning target and an opposite face of the exit seal opposite the cleaning target. The space includes an opening at a lateral end of the exit seal. The exit seal contacts the cleaning target from a trailing direction of the exit seal and seals the opening at at least an attached end side of the exit seal.
Abstract:
An image forming apparatus includes a transfer device to transfer a toner image onto a recording medium with a transfer bias applied thereto, a recording medium conveyor to deliver the recording medium to a transfer region while controlling an alignment of the recording medium having entered the transfer region in alignment control, and a transfer bias controller to obtain a toner adhesion amount information on a post-alignment-control toner image that passes through the transfer region after the recording medium is free from the alignment control, and to reduce, when the toner adhesion amount per unit area is less than a predetermined amount, the transfer bias after the alignment control is released to a level less than that of a transfer bias that is applied when the toner image having a same toner adhesion amount passes through the transfer region before the recording medium is free from the alignment control.
Abstract:
An image forming apparatus includes an image bearer having an image bearing face to bear an image thereon; a transferer disposed opposing the image bearer, to transfer the image from the image bearing face onto a recording medium at a transfer section between the transferer and the image bearer; a first guide disposed upstream from the transfer section in a direction of delivery of the recording medium, to guide the recording medium to the transfer section; and a second guide upstream from the first guide and spaced away from the first guide, to guide the recording medium to the transfer section. Each of the first guide and the second guide extends in a lateral direction perpendicular to the direction of delivery. A leading end of the second guide in the direction of delivery is inclined from one end to the other end of the second guide in the lateral direction.
Abstract:
A cleaning device includes a cleaner, a plurality of cleaning sub-units, a sub-unit holder, a detachable transmission assembly, and a plurality of joint couplers. The cleaner scrapes off adhered material from a surface of a cleaning target while contacting the surface of the cleaning target. The cleaning sub-units each includes a holder to hold the cleaner and a drive-receive rotator to receive a driving force. The sub-unit holder holds the cleaning sub-units. The detachable transmission assembly includes a driving-force receive rotator to receive a driving force from an external unit and a plurality of drive transmission rotators to transmit the driving force received by the driving-force receive rotator to the drive-receive rotators of the cleaning sub-units. The joint couplers mounted on the drive-receive rotators and the drive transmission rotators couple the drive-receive rotators with the drive transmission rotators in a rotation axial direction.
Abstract:
An image forming apparatus includes an image bearer; a toner image forming unit, a transfer unit, a detector, and a controller. The toner image forming unit forms a plurality of types of density detection patterns on the surface of the image bearer in mutually-different positions in a surface-movement direction of the image bearer. The density detection patterns have mutually-different lengths in a direction orthogonal to the surface-movement direction of the image bearer. The transfer unit transfers the density detection patterns onto the surface of the transfer member. The detector detects image densities of the density detection patterns transferred on the surface of the transfer member. The controller calculates an image density difference between the density detection patterns on a basis of a detection result obtained by the detector, and corrects a transfer bias for transferring a toner image on a basis of a value of the image density difference.