Abstract:
In an example embodiment, packets for a selected flow are replicated and sent over one or more diverse paths, such as a primary path and at least one secondary path, to a destination switching device. At the destination switching device, one copy of the replicated packets is selected for delivery to the destination, and the remaining copies are discarded. In the event that packets are not received at the destination switching device due to loss of connection on the primary path or packets are not timely delivered due to congestion on the primary path, a different path may be selected as the primary path.
Abstract:
Techniques are provided to enable a support for guest access of devices in a network. At a controller apparatus in a first mobility sub-domain of a network comprising a plurality of mobility sub-domains, a request message containing a request for guest network access for a device is received from a first access switch in the first mobility sub-domain. The controller apparatus forwards the request message to a guest controller. At a tunneling endpoint apparatus in the first mobility sub-domain, a tunnel is established to the guest controller to carry traffic between the device and the guest controller. Traffic for the device passes in a tunnel between the first access switch and the tunneling endpoint apparatus in the first mobility sub-domain, through the tunneling endpoint apparatus in the first mobility sub-domain and in the tunnel between the routing apparatus in the first mobility sub-domain and the guest controller.
Abstract:
A system and method are provided for a hierarchical distributed control architecture to support roaming of wireless client devices. A plurality of access switches are provided and configured to serve one or more Internet Protocol (IP) subnets that comprises a plurality of IP addresses. The plurality of access switches are arranged in switch peer groups such that each access switch within a given switch peer group is configured to store information about other access switches in that switch peer group and about locations of wireless client devices that are associated with any wireless access point on any access switch in the switch peer group. The plurality of access switches are further grouped into a corresponding one of a plurality of mobility sub-domains each comprising a plurality of switch peer groups. A plurality of controller devices are provided, each configured to control access switches in a corresponding mobility sub-domain. Each controller device stores information about the plurality of access switches within its mobility sub-domain and about locations of wireless client devices at access switches in its mobility sub-domain. A central controller device is provided and configured to communicate with the plurality of controller devices for the respective mobility sub-domains. The central controller device is configured to store information about locations of wireless client devices in the mobility sub-domains.
Abstract:
Techniques are provided for seamless integration of wired and wireless functionality packet forwarding in network. A plurality of access switches are provided in each of a plurality of mobility sub-domains that are part of a mobility domain of a network. Each access switch serves one or more Internet Protocol (IP) subnets, each comprising a plurality of IP addresses. An access switch obtains an IP address for a wireless device according to the one or more IP subnets that the access switch serves. The access switch sends an association advertisement message to indicate the IP address of the wireless device and to enable other access switches and routers to compute a path to the wireless device. When a wireless device obtains an IP address, it can keep the same IP address as it roams in the mobility domain.
Abstract:
Method and system for providing dynamic network data traffic monitoring including monitoring a data network, detecting a change in the data network, initiating a span session based on the detected change in the data network, and dynamically modifying network configuration based on the detected change in the data network is disclosed.
Abstract:
In one embodiment, detecting data traffic from a host device in a data forwarding domain, injecting a host route associated with the detected data traffic, and updating a forwarding table associated with the host route are provided.
Abstract:
Method and system for providing dynamic network data traffic monitoring including monitoring a data network, detecting a change in the data network, initiating a span session based on the detected change in the data network, and dynamically modifying network configuration based on the detected change in the data network is disclosed.
Abstract:
One embodiment in accordance with the invention is a method that includes detecting a failure in a ring network and transmitting a multicast message across the ring network that includes information regarding the failure. Additionally, a new ring master of the ring network is designated. Furthermore, a ring port coupled to the failure is blocked.
Abstract:
A system for providing secure multi-cast broadcasts. The system includes a broadcasting processing system, a security server processing system, and at least one receiving processing system. The security server provides an encryption key to the broadcasting processing system and the at least one receiving processing system. The broadcasting processing system then encrypts broadcast data with the encryption data and transmits the encrypted data over the network. The at least one receiving processing systems then receive the encrypted data and decrypt the data using the encryption key.
Abstract:
In one example embodiment, a system and method are shown that includes calculating a first SPF tree for a first device, the first SPF tree including a root node and a first child node, the first device being the root node of the first SPF tree. Additionally, the system and method may include calculating a second SPF tree for a second device that is a neighbor of the first device, the second SPF tree including a root node and a first child node, the second device being the root node of the second SPF tree. Further, the system and method may include building a set of interested nodes including the second device, if the first child node if the first SPF tree and the first child node of the second SPF tree are distinct.