Abstract:
A display apparatus includes a display panel configured to output light for displaying a mixed image including a first image and a second image, and a filter device disposed at a light exit side of the display panel and including a first filter lens and a second filter lens, orthographic projections of the first and second filter lenses on a light-emitting surface of the display panel do not overlap, and wavelength ranges of light that the first filter lens allows to transmit do not overlap with wavelength ranges of light that the second filter lens allows to transmit. Wavelength ranges of light for displaying the first image are within the wavelength ranges of the light that the first filter lens allows to transmit, and wavelength ranges of light for displaying the second image are within the wavelength ranges of the light that the second filter lens allows to transmit.
Abstract:
A lens, an optical display device including the lens, and a method for manufacturing the lens. The lens includes at least two lens portions; which have different focal lengths. When human eyes view a real scene image through the at least two lens portions separately, the real scene image is imaged at different image distances. The lens includes different lens portions having different focal lens, and thus can be a multi-focus lens. When the lens is used for an optical display device, the human eyes will see virtual image planes at different distances when viewing a display picture through the different lens portions due to the different focal lengths of the different lens portions. Visual fatigue can be reduced, and also scene images at difference distances can be appropriated, so that the three-dimensional feeling is improved.
Abstract:
This disclosure relates to a light modulation panel and a display device. The light modulation panel comprises: a color separation grating plate having a plurality of light-transmissive microstructures; a reception substrate located on a light exit side of the color separation grating plate and spaced away from the color separation grating plate; and an optical waveguide layer located on a light exit side of the reception substrate. According to technical solutions of this disclosure, the optical waveguide layer can modulate the exit light into collimated light. As a result, cross-color phenomenons of the display device can be effectively improved, and thereby the display quality is enhanced. In addition, by adjusting a structure of the optical waveguide layer, the exit light can also be emitted out at a preset angle such that the display device can be applied in occasions such as 2D display, 3D display or privacy protection.
Abstract:
A light source device (01) and a control method thereof, a backlight module and a liquid crystal display device are provided. The light source device (01) comprises: a plurality of light emitting chips (011), the plurality of light emitting chips (011) including a first light emitting chip capable of emitting visible light of a first color, the control method of the light source device (01) comprising: causing the plurality of light emitting chips (011) to emit light simultaneously in order to obtain an operating visible light spectrum; obtaining a first energy ratio of the visible light of the first color in the operating visible light spectrum; comparing the first energy ratio with a target energy ratio; and adjusting the first energy ratio to the target energy ratio, in response to that the first energy ratio is different from the target energy ratio. Thereby, a problem of a higher ratio of blue light in an LED light source is solved, so as to achieve an eye-protection effect.