Abstract:
A method for manufacturing an induction rotor includes placing a lamination stack into a fixture in which the first end of the lamination stack is rotated in an opposite rotational direction from the second end of the lamination stack to skew the conduction bars to an angle α. Vertical members are fixed to an outer perimeter of each of the plurality of laminates of the lamination stack. Hoop members are fixed to each of the plurality of vertical members and an outer edge of each of the plurality of conduction bars. A conduction ring is fixed on each of the ends of the lamination stack. An outer perimeter of the lamination stack is machined to remove the plurality of vertical members and the plurality of hoop members from the lamination stack.
Abstract:
A lamination pack for a motor and method of forming the lamination pack is provided. The method includes inserting a plurality of conductor bars into a plurality of rotor slots defined by a lamination stack such that opposing bar ends of the conductor bars extend from opposing end faces of the lamination stack, skewing the lamination stack and the conductor bars to a skew angle relative to a rotation axis of the lamination stack, and subsequently bending the bar ends of the conductor bars in opposing radial directions to a locking angle greater than the skew angle, to lock each of the conductor bars in its respective rotor slot. The bent bar ends exert a compressive axial locking force on the lamination stack to prevent axial and radial movement of the laminations in the lamination stack and to prevent axial movement of the conductor bars relative to the lamination stack.
Abstract:
An electric motor includes a stator assembly and a rotor configured to rotate within the stator assembly about an axis. The stator assembly includes a stator case having a channel and a laminate steel core having a retention feature aligned with the channel of the stator case. The stator case is fixed to the laminate steel core via displacement of material of the stator case at the channel toward the laminate steel core to capture the retention feature. An electro-mechanical drive-unit employing the above-described electric motor and a method of generating a stator assembly for such an electric motor are also contemplated.
Abstract:
A rotor casting includes a lamination stack and a cast structure including proximal and distal cast end rings respectively adjacent proximal and distal end faces of the lamination stack. Cast axial ribs are distributed radially on a peripheral surface of the lamination stack and extend between the proximal and distal cast end rings. Cast feed members extend axially from the proximal cast end ring and are respectively positioned radially between an adjacent pair of axial ribs. In one example, cast bar segments integral to the proximal and distal cast end rings are formed in axial slots of the lamination stack. In one example, a bar insert in each axial slot has insert ends that extend respectively from the proximal and distal end faces of the lamination stack and are fully encapsulated respectively in the proximal and distal cast end rings. A method of forming the rotor casting is provided.
Abstract:
A part transfer system includes a robotic arm, and an end effector attached to the robotic arm. The end effector includes a locating pin that is operable to engage an existing part feature of a part. The presence of the existing part feature is required for the intended use of the part, and therefore serves a function of the part other than a transfer function. The existing part feature defines a circular aperture disposed on a feature plane. The locating pin includes an engagement portion that extends along a longitudinal axis of the at least one locating pin. The engagement portion includes a diameter that is tapered along the longitudinal axis such that the engagement portion of the locating pin engages a radial inner edge of the circular aperture on the feature plane along an approximately annular contact ring disposed about a circumference of the tapered portion.
Abstract:
An electrical part testing system for evaluating quality of an insulated electrical part, including a computer-controlled switching apparatus for providing an original voltage to the electrical part automatically according to a pre-established testing scheme calling for provision of voltage to each phase of the part, in turn, while grounding the other phases of the part. A high-frequency filter for receiving receive the original voltage, receiving a load voltage emanating from the electrical part in response to the part receiving the original voltage, and filtering the original voltage from the load voltage to isolate any partial-discharge voltage added to the original voltage by the electrical part while the part is being electrified by the original voltage, yielding a filtered signal. A computing device determines, based on a comparison of a peak amplitude of the partial-discharge inception voltage to a voltage threshold, the quality of the electrical part being tested.