摘要:
A system and method is provided for combining active and unsupervised learning for automatic speech recognition. This process enables a reduction in the amount of human supervision required for training acoustic and language models and an increase in the performance given the transcribed and un-transcribed data.
摘要:
The invention concerns a method and corresponding system for building a phonotactic model for domain independent speech recognition. The method may include recognizing phones from a user's input communication using a current phonotactic model, detecting morphemes (acoustic and/or non-acoustic) from the recognized phones, and outputting the detected morphemes for processing. The method also updates the phonotactic model with the detected morphemes and stores the new model in a database for use by the system during the next user interaction. The method may also include making task-type classification decisions based on the detected morphemes from the user's input communication.
摘要:
A system and a method are provided. A speech recognition processor receives unconstrained input speech and outputs a string of words. The speech recognition processor is based on a numeric language that represents a subset of a vocabulary. The subset includes a set of words identified as being for interpreting and understanding number strings. A numeric understanding processor contains classes of rules for converting the string of words into a sequence of digits. The speech recognition processor utilizes an acoustic model database. A validation database stores a set of valid sequences of digits. A string validation processor outputs validity information based on a comparison of a sequence of digits output by the numeric understanding processor with valid sequences of digits in the validation database.
摘要:
Word lattices that are generated by an automatic speech recognition system are used to generate a modified word lattice that is usable by a spoken language understanding module. In one embodiment, the spoken language understanding module determines a set of salient phrases by calculating an intersection of the modified word lattice, which is optionally preprocessed, and a finite state machine that includes a plurality of salient grammar fragments.
摘要:
A system and a method are provided. A speech recognition processor receives unconstrained input speech and outputs a string of words. The speech recognition processor is based on a numeric language that represents a subset of a vocabulary. The subset includes a set of words identified as being for interpreting and understanding number strings. A numeric understanding processor contains classes of rules for converting the string of words into a sequence of digits. The speech recognition processor utilizes an acoustic model database. A validation database stores a set of valid sequences of digits. A string validation processor outputs validity information based on a comparison of a sequence of digits output by the numeric understanding processor with valid sequences of digits in the validation database.
摘要:
Systems and methods for determining word confidence scores. Speech recognition systems generate a word lattice for speech input. Posterior probabilities of the words in the word lattice are determined using a forward-backward algorithm. Next, time slots are defined for the word lattice, and for all transitions that at least partially overlap a particular time slot, the posterior probabilities of transitions that have the same word label are combined for those transitions. The combined posterior probabilities are used as confidence scores. A local entropy can be computed on the competitor transitions of a particular time slot and also used as a confidence score.
摘要:
A voice-enabled help desk service is disclosed. The service comprises an automatic speech recognition module for recognizing speech from a user, a spoken language understanding module for understanding the output from the automatic speech recognition module, a dialog management module for generating a response to speech from the user, a natural voices text-to-speech synthesis module for synthesizing speech to generate the response to the user, and a frequently asked questions module. The frequently asked questions module handles frequently asked questions from the user by changing voices and providing predetermined prompts to answer the frequently asked question.
摘要:
Systems and methods for annotating speech data. The present invention reduces the time required to annotate speech data by selecting utterances for annotation that will be of greatest benefit. A selection module uses speech models, including speech recognition models and spoken language understanding models, to identify utterances that should be annotated based on criteria such as confidence scores generated by the models. These utterances are placed in an annotation list along with a type of annotation to be performed for the utterances and an order in which the annotation should proceed. The utterances in the annotation list can be annotated for speech recognition purposes, spoken language understanding purposes, labeling purposes, etc. The selection module can also select utterances for annotation based on previously annotated speech data and deficiencies in the various models.
摘要:
The invention concerns a method and system for detecting morphemes in a user's communication. The method may include recognizing a lattice of phone strings from the user's input communication, the lattice representing a distribution over the phone strings, and detecting morphemes in the user's input communication using the lattice. The morphemes may be acoustic and/or non-acoustic. The morphemes may represent any unit or sub-unit of communication including phones, diphones, phone-phrases, syllables, grammars, words, gestures, tablet strokes, body movements, mouse clicks, etc. The training speech may be verbal, non-verbal, a combination of verbal and non-verbal, or multimodal.
摘要:
The invention concerns a method and system for detecting morphemes in a user's communication. The method may include recognizing a lattice of phone strings from the user's input communication, the lattice representing a distribution over the phone strings, and detecting morphemes in the user's input communication using the lattice. The morphemes may be acoustic and/or non-acoustic. The morphemes may represent any unit or sub-unit of communication including phones, diphones, phone-phrases, syllables, grammars, words, gestures, tablet strokes, body movements, mouse clicks, etc. The training speech may be verbal, non-verbal, a combination of verbal and non-verbal, or multimodal.