Implicit bridging of machine learning tasks

    公开(公告)号:US10679148B2

    公开(公告)日:2020-06-09

    申请号:US16402787

    申请日:2019-05-03

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for performing machine learning tasks. One method includes receiving (i) a model input, and (ii) data identifying a first machine learning task to be performed on the model input to generate a first type of model output for the model input; augmenting the model input with an identifier for the first machine learning task to generate an augmented model input; and processing the augmented model input using a machine learning model. An exemplary system applying implicit bridging for machine learning tasks, as described in this specification, trains a machine learning model to perform certain types of machine learning tasks without requiring explicit training data for the certain types of machine learning tasks to be used during training.

    MULTI-DIALECT AND MULTILINGUAL SPEECH RECOGNITION

    公开(公告)号:US20200160836A1

    公开(公告)日:2020-05-21

    申请号:US16684483

    申请日:2019-11-14

    Applicant: GOOGLE LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer-readable media, for speech recognition using multi-dialect and multilingual models. In some implementations, audio data indicating audio characteristics of an utterance is received. Input features determined based on the audio data are provided to a speech recognition model that has been trained to output score indicating the likelihood of linguistic units for each of multiple different language or dialects. The speech recognition model can be one that has been trained using cluster adaptive training. Output that the speech recognition model generated in response to receiving the input features determined based on the audio data is received. A transcription of the utterance generated based on the output of the speech recognition model is provided.

    MULTILINGUAL SPEECH SYNTHESIS AND CROSS-LANGUAGE VOICE CLONING

    公开(公告)号:US20240404506A1

    公开(公告)日:2024-12-05

    申请号:US18797760

    申请日:2024-08-08

    Applicant: Google LLC

    Abstract: A method includes receiving an input text sequence to be synthesized into speech in a first language and obtaining a speaker embedding, the speaker embedding specifying specific voice characteristics of a target speaker for synthesizing the input text sequence into speech that clones a voice of the target speaker. The target speaker includes a native speaker of a second language different than the first language. The method also includes generating, using a text-to-speech (TTS) model, an output audio feature representation of the input text by processing the input text sequence and the speaker embedding. The output audio feature representation includes the voice characteristics of the target speaker specified by the speaker embedding.

Patent Agency Ranking