Abstract:
A method and a device for assessing video encoding quality. The method includes: acquiring a quantization parameter of a slice of a video frame and a quantity of bytes per pixel of the slice of the video frame of the video stream; determining complexity of content of the video according to the quantity of bytes per pixel of the slice of the video frame of the video stream; and predicting the video encoding quality according to the complexity of content of the video and the quantization parameter of the video. In the present invention, the complexity of content of the video is also considered in predicting the video encoding quality. Therefore, encoding quality predicted by a model that is obtained by considering the complexity of content of the video better satisfies subjective feelings of human eyes, thereby improving accuracy of prediction.
Abstract:
In a method for evaluating media quality, media reference quality and rebuffering event distortion quality are obtained, final media quality are determined according to the obtained media reference quality and rebuffering event distortion quality, where a parameter of the rebuffering event distortion quality includes at least one of the following: the number of rebuffering events, a duration of the rebuffering event, a multiple rebuffering event interaction impact parameter, initial media quality, and a factor describing media content complexity. When media quality is calculated, impact of the multiple rebuffering event interaction impact parameter, the initial media quality, and the factor describing media content complexity on the media quality is considered, thereby making a media quality evaluation result more accurate.
Abstract:
Embodiments of the present invention provide frame type detection and frame size detection methods and apparatuses for a video stream. The video frame type detection method includes: obtaining a size of a current video frame; obtaining a change feature value of the current video frame; obtaining an I-frame threshold of the current video frame; and determining whether the previous first video frame is an I frame according to the change feature value of the current video frame and a change feature value of the previous first video frame, the I-frame threshold of the current video frame, and the size of the current video frame, the size of the previous first video frame, and a size of a previous second video frame. The present invention provides a complete and effective frame type detection method; in addition, impact of a video frame rate is fully considered.
Abstract:
Embodiments of the present invention disclose a shooting method, an apparatus, and a terminal. The method includes: after it is detected that a camera is started, instructing a display screen facing a shooting person to display a preview image; obtaining a preset lighting parameter; controlling a display screen facing a shot target to provide lighting by using the preset lighting parameter; and shooting an image according to a shooting instruction. In the embodiments of the present invention, a display screen may be used as an auxiliary light source, and the display screen is controlled to provide lighting by using a preset lighting parameter, so that the quality of an image shot by a camera in a low light condition is improved.
Abstract:
A video quality assessment method and a video quality assessment apparatus are provided. The method includes: acquiring parameter information of video data, where the parameter information includes a bit rate, a frame rate, and packet information; performing calculation according to the bit rate or the frame rate to obtain benchmark video quality of the video data; calculating the number of successively lost packets according to the packet information, and calculating the number of effective packet loss times; performing calculation according to the number of effective packet loss times to obtain video packet loss and distortion quality of the video data; and performing calculation according to the benchmark video quality and the video packet loss and distortion quality to obtain final video quality. Using the number of effective packet loss times can accurately assess videos more effectively and reduce algorithm complexity.
Abstract:
A video data quality assessment method and apparatus are disclosed. The video data quality assessment method includes: acquiring a compression distortion parameter of video data; acquiring a frame impairment distortion parameter/video data rebuffering parameter; and calculating a video quality parameter according to the compression distortion parameter and the frame impairment distortion parameter/video data rebuffering parameter, where the video quality parameter is a difference between the compression distortion parameter and the frame impairment distortion parameter/video data rebuffering parameter.