Abstract:
A touch input device may be provided that includes: a pressure sensor; and a pressure detector. The pressure detector includes: a drive unit which applies a drive signal to the pressure sensor; a sensing unit which receives a signal from the pressure sensor and detects a change amount of a capacitance generated at the pressure sensor; and a controller which is configured to change and set the capacitance change amount corresponding to a predetermined pressure magnitude.
Abstract:
A smartphone may be provided that includes: a cover layer; an LCD panel; a backlight unit which is located under the LCD panel; a pressure electrode which is located under the backlight unit; a shielding member which is located under the pressure electrode; and a converter which converts a signal comprising information for a capacitance change amount outputted from the pressure electrode to a digital signal. A magnitude of a touch pressure is detected from the digital signal.
Abstract:
In one embodiment, a smartphone includes a first cover layer; an LCD panel located under the first cover layer; a backlight unit located under the LCD panel and comprising a reflective sheet and a second cover layer; and a capacitive touch sensor; wherein the backlight unit further comprises a pressure sensor and a spacer layer, the pressure sensor comprising electrodes attached on the second cover layer and spaced apart from the reflective sheet; wherein a touch position is detected by a sensing signal output from the touch sensor; wherein a magnitude of a touch pressure is detected based on a change amount of capacitance that is changed according to a distance between the pressure sensor and an electrode located within the LCD panel; wherein the LCD panel is bent according to the touch; and wherein the capacitance change amount changes as the LCD panel bends.
Abstract:
A smartphone includes: a cover layer; a display module, and comprises a component configured to cause the LCD panel to perform a display function; a pressure electrode which is located under the display module; and a shielding member which is located under the pressure electrode. At least a portion of a touch sensor which senses touch in a capacitive manner is located in the display module.
Abstract:
A smartphone may be provided that includes: a cover layer; an LCD panel; a backlight unit which is located under the LCD panel; a pressure electrode which is located under the backlight unit; a shielding member which is located under the pressure electrode; and a converter which converts a signal comprising information for a capacitance change amount outputted from the pressure electrode to a digital signal. A magnitude of a touch pressure is detected from the digital signal.
Abstract:
A smartphone includes: a cover layer; a display module, and comprises a component configured to cause the LCD panel to perform a display function; a pressure electrode which is located under the display module; and a shielding member which is located under the pressure electrode. At least a portion of a touch sensor which senses touch in a capacitive manner is located in the display module.
Abstract:
A touch input device capable of detecting a pressure of a touch on a touch surface may be provided that includes a substrate and a display module. The touch input device further includes an electrode which is disposed at a position where a distance between the electrode and a reference potential layer is changed by the touch on the touch surface. The distance may be changed depending on a magnitude of a pressure of the touch. The electrode outputs an electrical signal according to the change of the distance. A spacer layer is disposed between the reference potential layer and the electrode.
Abstract:
Provided is an electronic device including a panel including a plurality of first electrodes extending in a Y-axis and a plurality of second electrodes extending in an X-axis, a driving part configured to individually control a direction of current flowing through the plurality of first electrode and the plurality of second electrodes so as to generate electromagnetic fields, thereby driving a stylus, and a determination part configured to receive a signal generated in the stylus so as to determine touch coordinates. Each of the plurality of first electrodes and the plurality of second electrodes does not form a closed loop. In the electronic device and a stylus driving device according to the embodiment of the present invention, since a separate configuration such as a digitizer, an antenna, and the like is not required, the product may be miniaturized and thinned, and the manufacturing cost may be reduced.
Abstract:
The present invention relates to a display device, and more particularly, to an Active Matrix Organic Light Emitting Diode (AMOLED) display device including a Touch and Display Driver Integration (TDDI). A display device according to an exemplary embodiment of the present invention includes: a TFT layer including a first region and a second region; an encapsulation layer disposed on the first region of the TFT layer; an organic light emitting layer disposed between the first region of the TFT layer and the encapsulation layer; a touch sensor disposed on the encapsulation layer; a touch sensor line extending from the touch sensor; a touch sensor trace formed on the TFT layer and electrically connected with the touch sensor line; a display line formed in the TFT layer and configured to transmit a display driving signal; a TDDI disposed in the second region of the TFT layer and connected with the touch sensor trace and the display line; and an FPCB bonded with a bonding region formed in the second region of the TFT layer and electrically connected with the TDDI.
Abstract:
a touch device according to an exemplary embodiment includes: a plurality of touch electrodes; and a driver/receiver that applies driving signals, each having a frequency corresponding to a resonance frequency of a stylus pen, to the plurality of touch electrodes, and receives detection signals from the plurality of touch electrodes, wherein the driving signals may include a first driving signal and a second driving signal, each having a different phase.