-
公开(公告)号:US10281541B2
公开(公告)日:2019-05-07
申请号:US15956554
申请日:2018-04-18
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Christopher Thomas McNulty
IPC: G01V3/00 , G01R33/385 , G01R33/383 , G01R33/44 , G01R33/389 , G01R33/421 , G01R33/56 , G01R33/38 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , A61B50/13 , G01R33/36 , G01R33/422 , G01R33/3873
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US10274561B2
公开(公告)日:2019-04-30
申请号:US15879317
申请日:2018-01-24
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01V3/00 , G01R33/385 , G01R33/383 , G01R33/44 , G01R33/389 , G01R33/421 , G01R33/56 , G01R33/38 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , A61B50/13 , G01R33/36 , G01R33/422 , G01R33/3873
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied. According to some aspects, substantially no shielding of the imaging region of the portable magnetic resonance imaging system is provided.
-
公开(公告)号:US20180238981A1
公开(公告)日:2018-08-23
申请号:US15956554
申请日:2018-04-18
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/44 , G01R33/383
CPC classification number: G01R33/3852 , A61B5/0555 , A61B6/4405 , A61B50/13 , A61B90/00 , A61B2560/0431 , A61G13/104 , G01R33/34092 , G01R33/3642 , G01R33/3657 , G01R33/38 , G01R33/3802 , G01R33/3806 , G01R33/383 , G01R33/385 , G01R33/3854 , G01R33/3873 , G01R33/389 , G01R33/4215 , G01R33/422 , G01R33/445 , G01R33/48 , G01R33/5608
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US20180238980A1
公开(公告)日:2018-08-23
申请号:US15956522
申请日:2018-04-18
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon
IPC: G01R33/385 , G01R33/383 , G01R33/44
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US20180210047A1
公开(公告)日:2018-07-26
申请号:US15879203
申请日:2018-01-24
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/44 , G01R33/383
CPC classification number: G01R33/3852 , A61B5/0555 , A61B6/4405 , A61B50/13 , A61B90/00 , A61B2560/0431 , A61G13/104 , G01R33/34092 , G01R33/3642 , G01R33/3657 , G01R33/38 , G01R33/3802 , G01R33/3806 , G01R33/383 , G01R33/385 , G01R33/3854 , G01R33/3873 , G01R33/389 , G01R33/4215 , G01R33/422 , G01R33/445 , G01R33/48 , G01R33/5608
Abstract: According to some aspects, a low power magnetic resonance imaging system is provided. The magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprising a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to the field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view. The magnetic resonance imaging system further comprises a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, wherein the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition. According to some aspects, the magnetic resonance imaging system is a low-field magnetic resonance imaging system comprising a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system.
-
公开(公告)号:US20180164390A1
公开(公告)日:2018-06-14
申请号:US15879317
申请日:2018-01-24
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/422 , G01R33/36 , G01R33/38
CPC classification number: G01R33/3852 , A61B5/0555 , A61B6/4405 , A61B50/13 , A61B90/00 , A61B2560/0431 , A61G13/104 , G01R33/34092 , G01R33/3642 , G01R33/3657 , G01R33/38 , G01R33/3802 , G01R33/3806 , G01R33/383 , G01R33/385 , G01R33/3854 , G01R33/3873 , G01R33/389 , G01R33/4215 , G01R33/422 , G01R33/445 , G01R33/48 , G01R33/5608
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied. According to some aspects, substantially no shielding of the imaging region of the portable magnetic resonance imaging system is provided.
-
公开(公告)号:US20180156881A1
公开(公告)日:2018-06-07
申请号:US15880482
申请日:2018-01-25
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/421 , G01R33/48
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied. According to some aspects, substantially no shielding of the imaging region of the portable magnetic resonance imaging system is provided.
-
公开(公告)号:US20170276749A1
公开(公告)日:2017-09-28
申请号:US15466500
申请日:2017-03-22
Applicant: Hyperfine Research, Inc.
Inventor: Cedric Hugon , Michael Stephen Poole , Tyler S. Ralston
IPC: G01R33/3875
CPC classification number: G01R33/383 , G01R33/243 , G01R33/3802 , G01R33/3806 , G01R33/381 , G01R33/3873 , G01R33/445 , H01F7/0278 , H01F7/064 , H01F13/003
Abstract: According to some aspects, a method of producing a permanent magnet shim configured to improve a profile of a B0 magnetic field produced by a B0 magnet is provided. The method comprises determining deviation of the B0 magnetic field from a desired B0 magnetic field, determining a magnetic pattern that, when applied to magnetic material, produces a corrective magnetic field that corrects for at least some of the determined deviation, and applying the magnetic pattern to the magnetic material to produce the permanent magnet shim. According to some aspects, a permanent magnet shim for improving a profile of a B0 magnetic field produced by a B0 magnet is provided. The permanent magnet shim comprises magnetic material having a predetermined magnetic pattern applied thereto that produces a corrective magnetic field to improve the profile of the B0 magnetic field.
-
-
-
-
-
-
-