-
公开(公告)号:US20210100474A1
公开(公告)日:2021-04-08
申请号:US17065344
申请日:2020-10-07
Applicant: Hyperfine Research, Inc.
Inventor: Hadrien A. Dyvorne , Laura Sacolick , Carole Lazarus , Eddy B. Boskamp , Jeremy Christopher Jordan
IPC: A61B5/055 , G01R33/381 , G01R33/385 , G01R33/36 , G01R33/44 , G01R33/34
Abstract: A magnetic resonance (MR) imaging system, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, and a sensor configured to detect electromagnetic interference conducted by a patient into an imaging region of the MR imaging system. The sensor may comprise at least one electrical conductor configured for electrically coupling to the patient. The MR imaging system may further comprise a noise reduction system configured to receive the electromagnetic interference from the sensor and to suppress electromagnetic interference in detected MR signals received by the MR imaging system based on the electromagnetic interference detected by the sensor.
-
公开(公告)号:US10955500B2
公开(公告)日:2021-03-23
申请号:US16806532
申请日:2020-03-02
Applicant: Hyperfine Research, Inc.
Inventor: Laura Sacolick , Matthew Scot Rosen , Gregory L. Charvat , Jonathan M. Rothberg , Mathieu Sarracanie
IPC: G01R33/44 , G01R33/48 , G01R33/561 , G01R33/36 , G01R33/38 , G01R33/381
Abstract: A low-field magnetic resonance imaging (MRI) system. The system includes a plurality of magnetics components comprising at least one first magnetics component configured to produce a low-field main magnetic field B0 and at least one second magnetics component configured to acquire magnetic resonance data when operated, and at least one controller configured to operate one or more of the plurality of magnetics components in accordance with at least one low-field zero echo time (LF-ZTE) pulse sequence.
-
公开(公告)号:US20210048498A1
公开(公告)日:2021-02-18
申请号:US16994005
申请日:2020-08-14
Applicant: Hyperfine Research, Inc.
Inventor: Hadrien A. Dyvorne , Cedric Hugon , Rafael O'Halloran , Laura Sacolick
IPC: G01R33/565 , G01R33/58
Abstract: Techniques for compensating for presence of eddy currents during the operation of a magnetic resonance imaging (MRI) system in accordance with a pulse sequence, the pulse sequence comprising a gradient waveform associated with a target gradient field. The techniques include: compensating for presence of eddy currents during operation of the MRI system at least in part by correcting the gradient waveform using a nonlinear function of a characteristic of the gradient waveform to obtain a corrected gradient waveform; and operating the MRI system in accordance with the corrected gradient waveform to generate the target gradient field.
-
公开(公告)号:US20200264251A1
公开(公告)日:2020-08-20
申请号:US16868105
申请日:2020-05-06
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvome , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , A61B90/00 , G01R33/48 , G01R33/34 , A61G13/10 , A61B6/00 , A61B5/055 , G01R33/38 , G01R33/56 , G01R33/421 , G01R33/389 , A61B50/13 , G01R33/44 , G01R33/383
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied. According to some aspects, substantially no shielding of the imaging region of the portable magnetic resonance imaging system is provided.
-
公开(公告)号:US10718835B2
公开(公告)日:2020-07-21
申请号:US16122661
申请日:2018-09-05
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/383 , G01R33/385 , G01R33/44 , A61B50/13 , G01R33/389 , G01R33/421 , G01R33/56 , G01R33/38 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , G01R33/3873 , G01R33/36 , G01R33/422
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied.
-
公开(公告)号:US10591564B2
公开(公告)日:2020-03-17
申请号:US15132742
申请日:2016-04-19
Applicant: Hyperfine Research, Inc.
Inventor: Jonathan M. Rothberg , Jeremy Christopher Jordan , Michael Stephen Poole , Laura Sacolick , Todd Rearick , Gregory L. Charvat
IPC: G01R33/56 , G01R33/36 , G01R33/38 , G01R33/34 , G01R33/385 , G01R33/28 , G01R33/565 , G01R33/44 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/381 , G01R33/383 , G01R33/3875 , G01R33/54 , G01R33/422
Abstract: In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
-
公开(公告)号:US10591561B2
公开(公告)日:2020-03-17
申请号:US14938430
申请日:2015-11-11
Applicant: Hyperfine Research, Inc.
Inventor: Laura Sacolick , Matthew Scot Rosen , Gregory L. Charvat , Jonathan M. Rothberg , Mathieu Sarracanie
IPC: G01R33/44 , G01R33/48 , G01R33/561 , G01R33/36 , G01R33/38 , G01R33/381
Abstract: A low-field magnetic resonance imaging (MRI) system. The system includes a plurality of magnetics components comprising at least one first magnetics component configured to produce a low-field main magnetic field B0 and at least one second magnetics component configured to acquire magnetic resonance data when operated, and at least one controller configured to operate one or more of the plurality of magnetics components in accordance with at least one low-field zero echo time (LF-ZTE) pulse sequence.
-
公开(公告)号:US10466327B2
公开(公告)日:2019-11-05
申请号:US16207971
申请日:2018-12-03
Applicant: Hyperfine Research, Inc.
Inventor: Jonathan M. Rothberg , Jeremy Christopher Jordan , Michael Stephen Poole , Laura Sacolick , Todd Rearick , Gregory L. Charvat
IPC: G01V3/00 , G01R33/56 , G01R33/36 , G01R33/38 , G01R33/385 , G01R33/44 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/381 , G01R33/383 , G01R33/3875 , G01R33/54 , G01R33/34 , G01R33/28 , G01R33/565 , G01R33/422
Abstract: In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
-
公开(公告)号:US20190178962A1
公开(公告)日:2019-06-13
申请号:US16275285
申请日:2019-02-13
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/44 , G01R33/389 , A61B5/055 , G01R33/383 , G01R33/421 , G01R33/56 , G01R33/38 , G01R33/34 , G01R33/48 , A61G13/10 , A61B50/13 , A61B6/00 , A61B90/00
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied. According to some aspects, substantially no shielding of the imaging region of the portable magnetic resonance imaging system is provided.
-
公开(公告)号:US20190033416A1
公开(公告)日:2019-01-31
申请号:US16152126
申请日:2018-10-04
Applicant: Hyperfine Research, Inc.
Inventor: Jonathan M. Rothberg , Jeremy Christopher Jordan , Michael Stephen Poole , Laura Sacolick , Todd Rearick , Gregory L. Charvat
IPC: G01R33/56 , G01R33/34 , G01R33/38 , G01R33/565 , G01R33/28 , G01R33/385 , G01R33/44 , G01R33/3875 , G01R33/381 , G01R33/48 , G01R33/36 , H01F7/02 , H01F7/06
Abstract: In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
-
-
-
-
-
-
-
-
-