Abstract:
A liquid crystal cell having a first substrate with a rubbed layer provided thereon, a second substrate with a photo-aligned layer provided thereon, and a liquid crystal material provided between the substrates.
Abstract:
A MIMO channel frequency response matrix is decomposed into a frequency-related par and a constant part. The constant part is independent of subcarrier index and of number of subcarriers in one symbol interval. Separated QR decomposition and either SVD or GMD is applied to the two parts. A right unitary matrix (R) is obtained from the SVD or GMD applied to the constant part. QR decomposition is applied to the constant part to generate a beamforming matrix (V). In another embodiment, a selection criterion based on a correlation matrix distance is used to select a beamforming matrix that is independent of subcarrier, the selected matrix is retrieved from a local memory and applied to a received signal. Noise covariance is computed for a noise expression which considers interference generated from the applied beamforming matrix. Data detection is performed on the received signal using the noise covariance.
Abstract:
A stereoscopic liquid crystal display includes an LCD panel with an upper substrate, a lower substrate disposed opposite the upper substrate, and a liquid crystal material between the upper and lower substrates. A lenticular plate is disposed above the LCD panel. An hole is formed in the lenticular plate. The hole provides and air conduit that communicates in a space between a surface of the LCD panel and a surface of the lenticular plate. The hole is configured to facilitate evacuation of air from the space between LCD panel and the lenticular plate. A sealant material is disposed in a predetermined pattern between the surfaces of the LCD panel and the lenticular plate. Air is evacuated through the hole and a vacuum is formed in the space between the LCD panel and the lenticular plate. The vacuum minimizes or eliminates a gap between the surfaces of the LCD panel and the lenticular plate.
Abstract:
A MIMO channel frequency response matrix is decomposed into a frequency-related part and a constant part. The constant part is independent of subcarrier index and of number of subcarriers in one symbol interval. Separated QR decomposition and either SVD or GMD is applied to the two parts. A right unitary matrix (R) is obtained from the SVD or GMD applied to the constant part. QR decomposition is applied to the constant part to generate a beamforming matrix (V). In another embodiment, a selection criterion based on a correlation matrix distance is used to select a beamforming matrix that is independent of subcarrier, the selected matrix is retrieved from a local memory and applied to a received signal. Noise covariance is computed for a noise expression which considers interference generated from the applied beamforming matrix. Data detection is performed on the received signal by a MIMO data detector using the noise covariance.
Abstract:
A multi-domain LCD device and a method for manufacturing the same are disclosed in which the process steps can be simplified and picture quality can be improved. The multi-domain LCD device includes first and second substrates, data and gate lines on the first substrate in first and second directions to define a plurality of pixel regions, a pixel electrode in each pixel region, having at least one slit pattern, a dielectric frame within the pixel regions on the second substrate to define a plurality of domains, and a liquid crystal layer between the first and second substrates. The method for manufacturing a multi-domain LCD device includes forming gate and data lines on a first substrate, the data line being formed to cross the gate line, forming a passivation film on the first substrate, forming a transparent conductive film on the passivation film, patterning the transparent conductive film to form a pixel electrode having at least one slit in a pixel region defined by the gate and data lines, forming a dielectric frame within the pixel region to define a plurality of domains on a second substrate opposite to the first substrate, and forming a liquid crystal layer between the first and second substrates.
Abstract:
A transflective LCD includes an upper substrate having a common electrode formed therein; a lower substrate spaced apart by a predetermined interval from the upper substrate and facing the upper substrate, the lower substrate having a pixel region including a switching region, a reflection part, and a transmission part, and including a delta film, a thin film transistor layer, a color filter layer and a reflector formed therein; a liquid crystal layer interposed between the upper substrate and the lower substrate; and a backlight assembly disposed below the lower substrate, for supplying light toward the lower substrate.
Abstract:
A dual LCD device includes a liquid crystal panel having a liquid crystal layer interposed between a first substrate and a second substrate, first and second polarizing plates attached to opposing surfaces of the liquid crystal panel, a first front light unit attached to a front side of the liquid crystal panel, and a second front light unit attached to a rear side of the liquid crystal panel.
Abstract:
A stereoscopic liquid crystal display includes an LCD panel with an upper substrate, a lower substrate disposed opposite the upper substrate, and a liquid crystal material between the upper and lower substrates. A lenticular plate is disposed above the LCD panel. An hole is formed in the lenticular plate. The hole provides and air conduit that communicates in a space between a surface of the LCD panel and a surface of the lenticular plate. The hole is configured to facilitate evacuation of air from the space between LCD panel and the lenticular plate. A sealant material is disposed in a predetermined pattern between the surfaces of the LCD panel and the lenticular plate. Air is evacuated through the hole and a vacuum is formed in the space between the LCD panel and the lenticular plate. The vacuum minimizes or eliminates a gap between the surfaces of the LCD panel and the lenticular plate.
Abstract:
An LCD panel and a method for manufacturing the same facilitate more efficient hardening a UV-type hardening sealant suitable for a large size panel. The LCD panel includes first and second substrates, an active region defined on the first substrate and provided with a plurality of TFT's and pixel electrodes, a sealing region defined along a periphery of the active region, a light-shielding region defined on the second substrate other than on the sealing region, and a liquid crystal region between the first and second substrates. The method for manufacturing an LCD panel includes the steps of preparing first and second substrates, forming a plurality of patterns in an active region on the first substrate, forming a UV hardening type sealant along a periphery of the active region, forming a light-shielding layer on the second substrate so as not to shield the sealant, attaching the first and second substrates to each other, and irradiating the sealant with UV-rays to harden the sealant.
Abstract:
A liquid crystal display (LCD) device and a method of manufacturing the same that can improve the picture quality are provided. A liquid crystal display device includes: a first substrate; a black matrix formed in a matrix configuration on the first substrate; a compensation layer disposed above the black matrix and including a plurality of compensation patterns separated a predetermined region from each other where the compensation layer has been removed; and a column spacer disposed in a region including at least the predetermined region.