Abstract:
A liquid crystal light control device in an embodiment according to the present invention includes a first liquid crystal cell, a second liquid crystal cell overlapping the first liquid crystal cell, a third liquid crystal cell overlapping the second liquid crystal cell, and a fourth liquid crystal cell overlapping the third liquid crystal, each of the first liquid crystal cell, the second liquid crystal cell, the third liquid crystal cell, and the fourth liquid crystal cell includes a first substrate arranged with a first electrode having a strip pattern, a second substrate arranged with a second electrode having a strip pattern, and a liquid crystal layer between the first substrate and the second substrate. The first substrate and the second substrate are arranged with a longitudinal direction of the strip pattern of the first electrode and second electrode intersecting.
Abstract:
According to one embodiment, a display device includes a first substrate including a pixel electrode, a second substrate including a common electrode, a liquid crystal layer located between the first substrate and the second substrate and containing polymer and liquid crystal molecules, and a light emitting element opposed to an end surface of the second substrate, the common electrode being separated from the pixel electrode by a first distance, at a first position, the common electrode being separated from the pixel electrode by a second distance, at a second position more separated from the light emitting element than the first position, the second distance being smaller than the first distance.
Abstract:
According to an aspect, an optical element includes: a first substrate including a first electrode; a second substrate stacked on the first substrate and including a second electrode; a liquid crystal layer provided between the first substrate and the second substrate; a sealing member extending along an outer periphery of the liquid crystal layer; a first spacer provided on an inner side of the sealing member; and a conductive column provided on an outer side of the sealing member and electrically connecting the first electrode and the second electrode. The conductive column and the first spacer include the same material.
Abstract:
According to one embodiment, a liquid crystal device includes a first liquid crystal cell and a second liquid crystal cell bonded to the first liquid crystal cell. The first liquid crystal cell and the second liquid crystal cell each include a first substrate including first electrodes formed in a strip shape, a second substrate including second electrodes formed in a strip shape, and a liquid crystal layer held between the first substrate and the second substrate. An angle of intersection of the first electrodes and the second electrodes is less than 90° in each of the first liquid crystal cell and the second liquid crystal cell.
Abstract:
According to one embodiment, a display device includes a first transparent substrate, a second transparent substrate having a first side surface and a second side surface, and a liquid crystal layer including a stripe-shaped polymer and liquid crystal molecules. The liquid crystal layer has a first region and a second region. When no voltage is applied to the liquid crystal layer, a first intersection angle of a first director of a first liquid crystal molecule and a first extension axis of the polymer included in the first region is different from a second intersection angle of a second director of a second liquid crystal molecule and a second extension axis of the polymer included in the second region.
Abstract:
According to an aspect, a display device includes a plurality of pixels. Each pixel includes two sub-pixels adjacent to each other in a first direction. Each sub-pixel has one of three colors allocated thereto. Two colors of the two sub-pixels included in the pixel are different. The two colors of the two sub-pixels and a positional relation between the two sub-pixels are the same in each of the pixels arrayed in a second direction. One color not allocated to the two sub-pixels included in a first pixel out of the three colors is allocated to at least one of the sub-pixels included in second pixels adjacent to the first pixel in the first direction. The sub-pixels having the same color allocated thereto are arranged along the first direction with one sub-pixel interposed therebetween, the one sub-pixel having another color allocated thereto.
Abstract:
According to an aspect, a display device includes an image display panel including: sub-pixel rows, in each of which sub-pixels for displaying different colors are periodically arrayed in a first direction, are regularly arranged in a second direction different from the first direction; signal lines in parallel to sub-pixel columns in which the sub-pixels are successively arranged in the second direction; and scan lines that sequentially select each sub-pixel row. Each of m (integer≥2) selector signals selects n (integer 1) pairs of the signal lines each supplied with two signals each having a mutually reverse polarity, within a period during which each sub-pixel row is selected by a corresponding scan line, and a sum of potential changes of the n pairs of the signal lines selected by each selector signal is substantially zero when each sub-pixel row is sequentially selected by the corresponding scan line.
Abstract:
According to one embodiment, a display device includes signal lines, scanning lines, a first pixel, a second pixel and a third pixel. The first pixel including a first subpixel which displays a first color, a second subpixel which displays white, and a third subpixel which displays a second color. The second pixel including a fourth subpixel which displays a third color, a fifth subpixel which displays white, and a sixth subpixel which displays the first color. The third pixel including a seventh subpixel which displays the second color, an eighth subpixel which displays white, and a ninth subpixel which displays the third color.
Abstract:
A display device includes: an image display panel including a plurality of pixels each including first to fourth sub-pixels; and a signal processing unit. The signal processing unit determines an expansion coefficient related to the image display panel, obtains output signals of the first to the third sub-pixels based on at least input signals of the first to the third sub-pixels and the expansion coefficient to be output to the first to the third sub-pixels respectively, obtains a fourth sub-pixel correction value as a correction value of an output signal of the fourth sub-pixel based on the input signals of the first to the third sub-pixels and the expansion coefficient, and obtains the output signal of the fourth sub-pixel based on the input signals of the first to third sub-pixels, the expansion coefficient, and the fourth sub-pixel correction value to be output to the fourth sub-pixel.
Abstract:
A light adjustment device includes a panel unit including a plurality of light adjustment panels stacked in a first direction, each light adjustment panel including a first substrate and a second substrate, the first substrate including a first terminal, the second substrate overlapping the first substrate and including a second terminal, and a metal film provided at a side part of the panel unit and extending in the first direction.