Abstract:
An exterior vehicle mirror system has a support mounted to the side of the vehicle; a support arm extending from said support to a distal end; a mirror housing movable along said support arm from a first position proximate said fixed support to a second position proximate said distal end, and enclosing a mirror unit and an electrically powered mirror unit adjust mechanism for adjusting said mirror unit about horizontal and vertical axes; an electrically powered pivoting and extending mechanism for pivoting said support arm about said support between an extended position and a folded position, and for moving said mirror housing along said support arm from said first position to said second position; and an electronic control system operable by a driver of the vehicle to control the operation of said powered pivoting and extending mechanism independent of the operation of said powered mirror unit adjust mechanism.
Abstract:
A vehicular external rearview mirror system comprises a twin-arm assembly comprising a pair of parallel support arms connected at one end to a base attached to the vehicle and movably connected at another end to a reflective element assembly through a movable support bracket. The support bracket supports a reflective element assembly and is attached to the twin-arm assembly through a pair of integral bearings which translate along the arms to extend or retract the reflective element assembly. In one embodiment, the bearing imparts a friction force to the arm to enable the bracket to be moved along the arm under the influence of an extension/retraction force, but to maintain the bracket at a selected position along the arm when the force is removed. In another embodiment, the bearing is adapted for frictionless translation of the bracket along the arms under the influence of a powerextend actuator. In yet another embodiment, the bearing is integrated into the movable support bracket for frictional support of the bracket on the arms.
Abstract:
A vehicular pivot mirror assembly comprises a reflective element assembly pivotably attached to a support arm to enable rotation of the reflective element assembly relative to the support arm about a pivot connection. A positioning assembly enables rotation of the reflective element assembly in response to a rotational force applied to the reflective element assembly and prevents rotation of the reflective element assembly when the rotational force is removed.
Abstract:
A motorized tilt actuator assembly comprises one or more threaded jack screws attached to a mirror glass case and traveling along one or more threaded actuator shafts with rotation of the motor. When a jack screw reaches its limit of travel, relative movement between the actuator shaft and the glass case can occur through a slip clutch mechanism during such time as the motor continues to operate. In one embodiment, the relative movement is accommodated by a spherical actuator head rotating in a compressively spring-biased socket. In another embodiment, the relative movement is accommodated by slippage along a friction surface interposed between the actuator shaft and the motor. Manual repositioning of the mirror can be accommodated by slippage of the jack screw threads past the actuator shaft threads, or by a coarse threaded interconnection of the jack screw and the actuator shaft.
Abstract:
A ground illuminator for an external vehicle rearview mirror comprises an electrical light bulb installed in a housing having a transparent primary lens. A secondary lens it is interposed between the housing and the primary lens, and is spaced from the primary lens. The spacing between the lenses reduces the thermal conductivity between the lenses and provides a channel for airflow between the lenses, thereby minimizing the temperature of the primary lens due to illumination of the light bulb.
Abstract:
A rearview mirror for a motor vehicle comprises an internal frame supporting a reflective element and a motorized tilt actuator assembly for adjusting the reflective element about perpendicular axes. The reflective element is attached to the internal frame through a pivot connection. A positional memory module comprising a separate assembly is supported by the internal frame adjacent the pivot connection for electrically determining the horizontal and vertical tilt of the reflective element at a selected position as a change in voltage through a pair of simple electrical circuits. The reflective element can be returned to the selected position by adjusting the horizontal and vertical tilt of the reflective element according to the changes in voltage.
Abstract:
A motorized pivoting and extending mechanism for a vehicular mirror assembly includes, alternatively, a force-reduction mechanism for reducing the friction within the mechanism, and a slip clutch mechanism for reducing overloading of the motor when the limits of mirror extension and retraction have been reached. Mirror power functions receive electrical power and control signals through a circular array of electrical contacts incorporated into the pivot connection irrespective of the pivotal orientation of the mirror. A motor shut-off circuit is able to shut off the motor within a predetermined period of time. The mirror can be angularly adjusted upon movement of the mirror between the retracted and the extended positions to maintain a common field of view for a driver of the vehicle to prevent the extension and/or retraction of the mirror from undesirably repositioning the field of view captured by the mirror.
Abstract:
A vehicle mirror assembly is provided which can be moved via a power-transmitting assembly between folded and unfolded positions and the unfolded position and an extended position.
Abstract:
A first power mechanism (20) is provided in association with a fixed support (18) and with a swingable structure (16) and pivots the swingable structure (16) relative to the fixed support (18) between an extended position and a folded position adjacent the vehicle. A second power mechanism (24) is operatively associated with a swingable structure (16) and a mirror housing (12) to move the mirror housing (12) between inner and outer extended positions. A third power mechanism (28) moves the mirror unit (14) into a desired adjusted position about horizontal and vertical axes. An electronic control controls the operation of the first power mechanism (20) and the second power mechanism (24) and the third power mechanism (28) to control the powered pivoting of swingable structure (16) and to control the generally horizontal movement of mirror housing (12) to various positions located between inner and outer limiting positions and to adjust the mirror about vertical and horizontal axes.
Abstract:
A mirror assembly for use on an automotive vehicle comprises a support base for fixedly mounting the mirror assembly to the vehicle. The mirror assembly further includes an upper and lower support arm, each extending longitudinally between a first end and a second end. A collar having an upper chamber and a lower chamber is fixedly secured to the first ends of the support arms and pivotally coupled to the support base for pivoting the support arms about a generally vertical axis between an operative position extending laterally from the vehicle and a folded position pivoted adjacent and generally parallel to the vehicle. A housing is slidably coupled to the second ends of the support arms and slidable therealong between a retracted position adjacent the first ends and an extended position adjacent the second ends. A mirror pane is operatively coupled to the housing for providing an adjustable reflective view from the mirror assembly. The mirror assembly further includes a drive mechanism housed within the lower support arm and lower chamber of the collar and operatively coupled to the housing by a clutch mechanism for moving the housing between the retracted position and the extended position. The mirror assembly also includes a pivot mechanism housed within the upper chamber of the collar and operatively coupled to the support base for pivoting the support arm between the operative position and the folded position.