Abstract:
Method for identifying geologic features from geophysical or attribute data using windowed principal component (or independent component) analysis. Subtle features are made identifiable in partial or residual data volumes. The residual data volumes (24) are created by (36) eliminating data not captured by the most prominent principal components (14). The partial data volumes are created by (35) projecting the data on to selected principal components. The method is suitable for identifying physical features indicative of hydrocarbon potential.
Abstract:
Techniques and systems for design of optical switch arrays so as to minimize power requirements are described. A design system includes a computer system hosting a design program. The design program receives parameters for the switch array, including a number N of outputs required, and either a maximum number L of stages allowed or maximum and average power requirements allowed. If power requirements are used as parameters, the design program uses N and the power requirements to compute the value of L. The design program then constructs a minimum power sequence of L switches or N switches, whichever is less. If N is less than L+1, N outputs are present and the array is complete. If N is greater than L+1, the design program then adds switches one at a time to the minimum power switch path of the array, until the array provides N outputs.
Abstract:
A method for scheduling data bursts from origin to destination nodes of a communication system involves selecting a yet-unscheduled, feasible node pair for scheduling of a burst therebetween; selecting a timeslot from a finite timeslot sequence; scheduling the burst for the selected timeslot; and repeating the preceding steps to exhaustion of unscheduled demand or of feasible node pairs. The feasibility of a node pair is conditioned on the avoidance of collisions with already-scheduled bursts, taking the various origin-to-destination propagation delays into account.
Abstract:
Mobiles are sorted by using a first metric and one or more of the sorted mobiles are selected. A second metric is determined using the selected sorted mobiles, and mobiles are selected to transmit during a time period based on the second metric. Multiple embodiments are disclosed using these steps and exact or approximate solutions as to which mobiles should transmit may be determined. By way of example, the first metric may be a weighted marginal rate and the second metric may be an objective function. An uplink proportional fair technique is presented in which, for example, either a single “strong” mobile or a group of “weak” mobiles may be selected to transmit during a single time period. In addition, techniques are presented for determining uplink scheduling when there is partial orthogonality in Walsh codes, modeled by an orthogonality factor, assigned to mobiles. Techniques are also presented for optimal uplink scheduling for uplink mobile transmissions in a single cell with successive interference cancellation.
Abstract:
A method is disclosed for designing a signaling network of call coordinators (CCs) for internet telephony. The new method can be used to design a CC network of arbitrary size that satisfies, with high probability, limitations on the maximum number of sockets per CC and on the maximum number of hops between an arbitrary pair of switches in the network. According to the disclosed method, the network of CCs is treated initially as a collection of isolated points, one point for each CC. Then, links are added between pairs of CCs, excluding pairs lying within the same switch. The links are added randomly, but with a particular probability p, which may be different for different pairs. Thus, whether a given link is added depends, in effect, upon the outcome of a loaded coin toss in which the probability of a positive outcome is p.
Abstract:
In a cellular system, a new cell measures signal strengths of different channels being used by existing cells. The new cell generates a list of candidate channels corresponding to the channels with the greatest signal strength and transmits the list to the mobile switching center (MSC) of the cellular system. The MSC determines which of the candidate channels correspond to beacons in existing cells and transmits configuration information to the new cell for those corresponding existing cells. In this way, the new cell automatically receives configuration information on its neighbor cells. If the MSC determines that the number of candidate channels that are beacons is too small, the MSC will ask the new cell to transmit additional candidate channels (i.e., those having even lower signal strength).