摘要:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
摘要:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
摘要:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
摘要:
Systems and methodologies are described that facilitate transitioning between states associated with a wireless terminal. The wireless terminal may transition to and/or from a split-tone on state, which may enable increasing overall user capacity related to a base station or sector. Further, such state transitions may reduce power consumption associated with the wireless terminal.
摘要:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
摘要:
Methods and apparatus related to assignment in a wireless communications system are described. A mobile is assigned an identifier and a mask value, e.g., as part of a state transition message. The mobile uses the assigned identifier and/or the assigned mask value in determining whether assignments included in assignment messages, e.g., traffic channel assignment messages, are directed to the wireless terminal. Predetermined associations between assignment slots, assigned segments, and/or mask values are utilized to limit control signaling overhead. Different groups of segments are available for assignment to different wireless terminals as a function of mask values. Different types of assignment messages use different amounts of information bits to convey the assignment. Some types of assignments use a wireless terminal identifier, while other types of assignments use a wireless terminal identifier and a mask identifier. The mask identifier, e.g., a single bit, allows for selection between a subset of the potential masks used in the system.
摘要:
Uplink traffic channel allocation is realized by utilizing a dedicated control channel in which a prescribed portion of the control channel resource, for example, frequency, time slot or the like, is reserved for transporting the uplink traffic channel requests. Both the base station and the particular mobile unit know the prescribed portion of the control channel resource a priori. Consequently, when the particular mobile unit transmits an uplink traffic channel request via the prescribed portion of the control channel resource there is no need for adding any control header information, thereby minimizing overhead. Furthermore, the length of the uplink traffic channel requests can be optimally chosen without constraints imposed by other control message schemes. Reduced overhead coupled with the prescribed portion of the control channel resource arriving quite frequently reduces latency in the particular mobile unit acquiring an uplink traffic channel. In one example, delivery of adequate uplink traffic channel request information to the base station, while minimizing the adverse impact of losing requests, is ensured by persistently transmitting the requests. Specifically, after the mobile unit transmits a first request, it transmits a second or even a third request instead of waiting to receive a response message from the base station and/or waiting for a timer to time out. By the mobile unit using such a persistent request transmission scheme, the base station can readily determine the true value of the received request by eliminating the transmission loop delay effect, thereby allowing a sensible assignment decision to be made.
摘要:
An unique arrangement including a so-called timing control order and timing control signals is employed to identify whether wireless terminals are reachable within a base station cell coverage area in a wireless communications system. To this end, detection of a particular wireless terminal being alive and well, and within the cell coverage area associated with a base station is effected by the base station transmitting a timing control order in a timing control time slot reserved for the particular wireless terminal. If the particular wireless terminal receives the timing control order, it transmits a prescribed timing control message at a prescribed time. If the base station does not receive the timing control message, it is an indication that communication with the particular wireless terminal has been lost.
摘要:
Access request transmissions are effected in a wireless communications system by assigning each mobile unit a unique dedicated uplink resource. Specifically, each mobile unit is assigned channel segments with distinct time slot indices and/or waveform indices, where waveforms with distinct indices are orthogonal. A base station can identify the mobile that has made an access request from the dedicated uplink resource. Therefore, no mobile identification number is needed in the uplink request message. Then, the base station can transmit a request response message on a shared downlink resource that may include the identification number of the requesting mobile unit to acknowledge reception of the request. The mobile unit may transmit on a shared uplink resource an acknowledgment of reception of the downlink request response message.
摘要:
Tone sequences in a frequency hopping arrangement are generated and assigned by advantageously employing a combination of a sequence generator and a sequence assignor to generate sequences and assign them on a time slot by time slot basis. In a transmitter, the sequence generator and sequence assignor, in combination with a user tone assignor are employed to generate and assign tone sequences to a user on a time slot by time slot basis. In a receiver, the sequence generator and sequence assignor, in combination with a user tone identifier are employed to generate sequences and to identify incoming tone sequences to a user on a time slot by time slot basis. Specifically, the sequence assignment in a time slot is such that a prescribed plurality of sequences is assigned to a particular user. This partitioning of the tasks facilitates the use of a sequence generator that generates sequences with the desirable properties of interference and frequency diversity and, which, leaves the task of properly assigning these sequences among one or more users to the sequence assignor. The sequence assignor functions in such a manner that the interference and frequency diversity properties for the one or more users are preserved, and this is further facilitated by assigning sequences in such a manner that they maximally overlap prior assigned sequences. In one embodiment of the invention, a Latin square based sequence is generated in accordance with a first prescribed process. In a second embodiment of the invention, a Latin cube based sequence is generated in accordance with a second prescribed process. In a third embodiment of the invention, a Latin hypercube of prescribed dimension based sequence is generated in accordance with a third prescribed process. In still another embodiment of the invention, the principles of the invention are employed to realize frequency band hopping.