摘要:
A method for determining position and alignment is provided. The method includes monitoring a first and second sequence of ultrasonic signals transmitted from the first device to a second device, estimating a location of the first device from Time of Flight measurements of the ultrasonic signals at respective microphones on the second device, calculating a set of phase differences, weighting a difference of an expected location and estimated location of the first device with the set of phase differences to produce a relative displacement, and reporting a position of the first device based on the relative displacement.
摘要:
At least one exemplary embodiment is directed to a website configured to collect sound signatures from around the world and beyond. A communication device automatically stores acoustic information received by a microphone of the communication device. The acoustic information is analyzed for a trigger event. The trigger event stores the acoustic information, attaches metadata, creates a Gaussian Mixture Model, and measures sound pressure level. The communication device automatically sends the sound signature to a database when a communication path is opened to communication device. Each sound signature has associated metadata including a time stamp and geocode. Automatically collecting sounds using a communication device adapted for the process enables a database that captures sounds globally on a continuous basis.
摘要:
An apparatus for sensory based media control is provided. A system that incorporates teachings of the present disclosure may include, for example, a media device having a controller element to receive from a media controller a first instruction to select an object in accordance with a physical handling of the media controller, and a second instruction to control the identified object or perform a search on the object in accordance with touchless finger movements. Additional embodiments are disclosed.
摘要:
A touchless sensing unit (110) and method (210) for calibrating a mobile device for touchless sensing is provided. The method can include evaluating (214) a finger movement within a touchless sensory space (101), estimating (216) a virtual coordinate system (320) from a range of finger movement, and mapping (218) the virtual coordinate system to a device coordinate system (330).
摘要:
An Integrated Development Environment (IDE) (100) for creating a touchless Virtual User Interface (VUI) 120 is provided. The IDE can include a development window (152) for graphically presenting a visual layout of user interface (UI) components (161) that respond to touchless sensory events in a virtual layout of virtual components (261), and at least one descriptor (121) for modifying a touchless sensory attribute of a user component. The touchless sensory attribute describes how a user component responds to a touchless touchless sensory event on a virtual component.
摘要:
The invention concerns a system (100) and method (400) for operation of a voice activity detector (230). The system can include a speaker (105), a first microphone (110) and a second microphone (120) in which the first microphone and the second microphone can capture acoustic output from the speaker. The system can also include an adaptive module (220) in which the first microphone and the second microphone can provide signals to the adaptive module, and the adaptive module can provide an input to the voice activity detector. The adaptive module can receive a first input (242) from the first microphone and a second input (243) from the second microphone and can attempt to determine (430) a transformation between the first and second inputs for setting a configuration of the voice activity detector.
摘要:
A speech filter (108) enhances the loudness of a speech signal by expanding the formant regions of the speech signal beyond a natural bandwidth of the formant regions. The energy level of the speech signal is maintained so that the filtered speech signal contains the same energy as the pre-filtered signal. By expanding the formant regions of the speech signal on a critical band scale corresponding to human hearing, the listener of the speech signal perceives it to be louder even though the signal contains the same energy.
摘要:
Systems (100 or 300) and methods (400 or 500) are provided for selecting a post-compression waveform from a post-compression waveform table (106) and supplying it to a synthesis engine (108). The post-compression waveform is based upon a set of post-compression coefficients determined by generating a frequency-domain representation of a periodic signal, the representation including at least one pre-compression frequency-domain sample (204), and performing a threshold-based compression of the pre-compression frequency-domain samples. Systems and methods also include indexing and storing (502) post-compression coefficients in a post-compression coefficient table (102), generating (506) a post-compression waveform based upon the set of post-compression coefficients, and placing (508) the post-compression waveform in the table prior to the selecting (510). The system and method also include performing (504) a read-ahead operation on a sound file before selecting the post-compression waveform, the read-ahead operation indicating the post-compression waveform to be selected and supplied to the synthesis engine.
摘要:
A method, system and computer readable medium for increasing the audio perceptual loudness includes shifting at least one frequency of a first audio signal to create a second audio signal so as to increase the audio perceptual loudness. The power level of the second audio signal is not more than a power level of the first audio signal. The method also includes generating high-audio perceptual loudness tone alert sequences based on psychoacoustic and audiometric data. It further includes acquiring a listener's threshold audio profile; adding the listener's audio profile to the loudness sensitivity curve for producing the listener's tonal sensitivity curve; determining a required dB scaling for critical band tones from the listener's tonal sensitivity curve; normalizing the tonal sensitivity curve for creating a decibel curve; selecting a frequency range of the tones by using the tonal sensitivity curve; and spacing the sequence of tones along a critical band scale.
摘要:
A method of scaling polyphony can include identifying music data to be played (415), wherein the music data indicates instruments to be used and each instrument has an assigned priority. A measure of polyphony needed to play the music data can be compared with polyphony of a sound generating device (425). If the measure of polyphony exceeds the polyphony of the sound generating device, the music data can be played without using one or more instruments indicated by the music data according to the assigned priorities (440, 460).