摘要:
A gas sensor having a laminate structure composed of thin sheets of solid electrolyte and including a cavity portion 21 and an oxygen concentration cell 5. The oxygen concentration in the cavity portion 21 is held constant. The oxygen concentration cell 5 includes an active electrode 12 having a relatively high catalytic capability with respect to NOx or combustible gas and an inner common electrode 13/15 (serving as an inactive electrode and an oxygen-concentration-sensing electrode) having a relatively low catalytic capability with respect to NOx or combustible gas. The oxygen concentration cell 5 is disposed in the gas sensor so as to be exposed to the interior of the cavity portion 21. The concentration of NOx or combustible gas is determined based on an electromotive force (of the order of mV) generated between the active electrode 12 and the inner common electrode 13/15 by a concentration cell effect.
摘要:
A gas sensor which can detect the concentration of a combustible gas component in a measurement gas with high accuracy even when the oxygen concentration of the measurement gas or the element temperature changes and which has an excellent response in detecting the combustible gas component is disclosed. In a gas sensor 1, the oxygen concentration of a measurement gas is adjusted to a predetermined level within a first processing space 9 through operation of a first oxygen pump element 3. The measurement gas having an adjusted oxygen concentration is then introduced into a second processing space 10, where a combustible gas component is burned through the assistance of electrodes 16 and 17 functioning as oxidation catalyst sections. Constant voltage is applied to a combustible gas component concentration detection element 5. In this state, when the amount of oxygen changes due to the combustion of the combustible gas component, the output current of the combustible gas component concentration detection element 5 changes with change in the amount of oxygen. Therefore, information regarding the combustible gas component concentration of the original measurement gas can be obtained from the value of the output current. Further, oxygen required to burn the combustible gas component within the second processing space 10 is supplemented by a second oxygen pump element 6. Unlike conventional apparatuses, no feedback system is used, and a variation in the concentration of the combustible gas component appears directly as a variation in the current of the combustible gas component concentration detection element 5. Therefore, a high detection response is obtained.
摘要:
A gas sensor comprising a proton-conductive layer 5 formed of a polymer electrolyte; first and second electrodes 3 and 4 disposed in contact with the proton-conductive layer 5 and having a function of dissociating hydrogen; a gas-diffusion-rate limiting layer 2 disposed between a measurement gas atmosphere and the first electrode 3 and adapted to diffuse the gas under measurement to the first electrode 3 in a diffusion-rate limited state; and a dense support 1 supporting these elements. Hydrogen gas having reached the first electrode 3 via the gas-diffusion-rate limiting layer 2 is dissociated into protons by virtue of the catalytic action of Pt contained in the electrode and the voltage applied to the first electrode 3, and the generated protons are pumped to the second electrode 4 via the proton-conductive layer 5 and are converted to hydrogen gas, which diffuses into the measurement gas atmosphere. When the applied voltage is sufficiently high, saturation current flows between the first and second electrodes 3 and 4, and the magnitude of the saturation current varies in proportion to the hydrogen gas concentration of the gas under measurement. A hydrogen gas sensor which operates at low temperature in a hydrogen-rich atmosphere, and which can accurately measure hydrogen gas concentration of a fuel gas of a fuel cell, is thereby provided.
摘要:
Disclosed is an LaGaO3 sintered body which comprises lanthanum, gallium, oxygen and at least one of other elements, and has at least three crystal phases of different composition formula.
摘要:
A gas sensor 1 including a first processing space 9; a first gas passage 11; a second processing space 10; a second gas passage 13; an oxygen concentration detection element 4; a first oxygen pumping element 3 adapted to reduce the oxygen concentration of exhaust gas introduced into the first processing space 9 within a range such that a water vapor contained in the measurement gas is not substantially decomposed; an oxygen catalyst section 16; and a combustible gas component concentration information generation/output section 5. Also disclosed is a gas sensor system including the above gas sensor and first oxygen pumping operation control means for adjusting the oxygen concentration of the measurement gas introduced into the first processing space within a range such that water vapor contained in the measuring gas is not substantially decomposed.
摘要:
A small-sized inexpensive nitrogen oxide concentration sensor capable of measuring the concentration of the nitrogen oxide in a measuring gas to a high accuracy. A first oxygen pumping cell, an oxygen concentration measuring cell and a second oxygen pumping cell are formed in different solid electrolyte layers of zirconia and electrodes of oxygen concentration measuring cell are isolated from electrodes of the oxygen pumping cells by insulating film.
摘要:
There is described a gas-component concentration sensor, a method of using the sensor, and a method of manufacturing a particular electrode of the sensor, wherein the sensor comprises:a first measurement chamber, an oxygen partial-pressure detection electrode in the first measurement chamber, a first oxygen-ion pump cell within and outside the first measurement such that in response to a voltage applied between the pair electrodes the cell pumps out oxygen to an extent such that a gas component such as NO.sub.x partially decomposes in said first measurement chamber in an amount of not more than 40 wt. % of the gas component present;a second measurement chamber into which the measurement gas is introduced from the first measurement chamber, a second oxygen pump cell having a pair of electrodes such that in response to a voltage applied therebetween the second oxygen-ion pump cell decomposes the gas component within the second measurement chamber;wherein the pair of electrodes of the first oxygen ion pump cell the electrode provided inside first measurement chamber includes fine particles having a function of suppressing dissociation of the gas component that are formed on and carried by a first constituent component of the electrode.
摘要:
In a spark plug which has an electrode metal made from a heat- and erosion-resistant nickel alloy whose front end has a noble metal tip made of iridium or ruthenium, the electrode metal has a thermal conductivity of at least 30 W/m.multidot.K so as to avoid rapid temperature rise in the noble metal tip to thereby minimize oxidation-evaporation and attendant wear thereof.
摘要:
In a spark plug having a nickel-based electrode whose front end has a firing tip made from a ruthenium- or iridium-based metal in which an oxide of a rare earth metal group is dispersed, the firing tip is welded to the electrode by a solidified alloy layer having a component of the electrode and a component of the firing tip. The firing tip contains the oxide of the rare earth metal group in a range of 5.about.15% by volume (V), and an average grain size (D) of the oxide is in a range of 0.05.about.3.0 .mu.m with a quantitative relationship as D.ltoreq.-0.34V+5.1.
摘要:
In a center electrode for a spark plug, the center electrode is made of a heat-conductor core cladded with a nickel-alloyed metal. A recess is provided on the front end surface of the nickel-alloyed matrix and the columnar tip is made of a precious metal and fit in the recess in such a manner that a front end of the tip protracts from the recess. The outer surface of the tip is welded to an inner surface of the recess. The dimensional relationship of the components of the spark plug A, B, C, D, E, F and G is as follows: 0.3 mm.ltoreq.A.ltoreq.0.8 mm, 1.2A.ltoreq.B.ltoreq.3A, 0.1 mm.ltoreq.(C-A)/2.ltoreq.0.5 mm, D.ltoreq.(C-A)/2, E.ltoreq.B/4, 0 mm.ltoreq.F.ltoreq.0.5 mm and A/5.ltoreq.G.ltoreq.A/2, where A: a diameter of the columnar tip, B: a length of the columnar tip, C: a diameter of a front end of the nickel-alloyed metal, D: a length of a front end of the nickel-alloyed metal, E: a length of the front end of the tip which is protracted from the recess, F: a distance between a rear end of the tip and a front end of the heat-conductor core, G: a distance of a welding portion penetrated from the outer surface of the tip into the inner surface of the recess.
摘要翻译:在用于火花塞的中心电极中,中心电极由包含镍合金金属的导热芯组成。 在镍合金基体的前端面上设有凹部,柱状末端由贵金属制成,并以这样的方式配合在凹部内,使得尖端的前端从凹部伸出。 尖端的外表面焊接到凹部的内表面。 火花塞A,B,C,D,E,F和G的部件的尺寸关系如下:0.3mm A = 0.8mm,1.2A B = 3A, 0.1mm =(CA)/ 2 = 0.5mm,D (CA)/ 2,E B / 4,0mm = / = G A / 2,其中A:柱状尖端的直径,B:柱状尖端的长度,C:镍合金金属前端的直径,D: 镍合金金属的前端E:从凹部延伸的尖端前端的长度,F:尖端的后端与导热体芯的前端之间的距离,G :焊接部分从尖端的外表面穿入凹部的内表面的距离。