Abstract:
Radio frequency (RF) duplexing devices and methods of operating the same are disclosed. In one embodiment, an RF duplexing device includes a transmission port, a receive port, a first duplexer, and a second duplexer. The first duplexer is coupled to the transmission port and the receive port, and is configured to provide a first phase shift from the transmission port to the receive port. The second duplexer is also coupled to the transmission port and the receive port. However, the second duplexer is configured to provide a second phase shift that is differential to the first phase shift from the transmission port to the receive port. By providing the second phase shift so that the second phase shift is differential to the first phase shift, the RF duplexing device can provide isolation through cancellation without needing to introduce significant insertion losses.
Abstract:
Circuitry, which includes a linear amplifier and a linear amplifier power supply, is disclosed. The linear amplifier at least partially provides an envelope power supply signal to a radio frequency (RF) power amplifier (PA) using a selected one of a group of linear amplifier supply voltages. The linear amplifier power supply provides at least one of the group of linear amplifier supply voltages. Selection of the selected one of the group of linear amplifier supply voltages is based on a desired voltage of the envelope power supply signal.
Abstract:
Embodiments of circuitry, which includes power supply switching circuitry, a first inductive element, and a second inductive element, are disclosed. The power supply switching circuitry provides a first switching output signal to the first inductive element and a second switching output signal to the second inductive element. The first inductive element has a first inductor current and the second inductive element has a second inductor current. The second switching output signal is delayed from the first switching output signal by a switching signal delay. The first inductor current and the second inductor current combine to provide a combined inductor current, which has a frequency response with a group of notches, such that frequency locations of the group of notches are based on the switching signal delay.
Abstract:
The present disclosure relates to a split-band duplexer architecture that takes advantage of a relationship between a frequency division duplex (FDD) transmit band, an FDD receive band, and a time division duplex (TDD) band, which has frequencies located between FDD transmit band frequencies and FDD receive band frequencies. As such, by splitting the FDD receive and transmit bands into two sub-bands, two separate sub-band duplexers may be used to fully support the FDD receive and transmit bands. Further, a passband of one of the sub-band duplexers may be widened to support the TDD band while transmitting, and a passband of the other of the sub-band duplexers may be widened to support the TDD band while receiving. By using sub-band duplexers, isolation margins and insertion loss margins may be increased, which may allow use of standard filter components, such as surface acoustic wave (SAW) filters.
Abstract:
This disclosure relates to radio frequency (RF) front end circuitry used to route RF signals. In one embodiment, the RF front end circuitry has a filter circuit and a switch device. The switch device includes a common port, an RF port, and switchable path connected in series between the common port and the RF port. The switch device is configured to present approximately the filter capacitance of the filter circuit at the common port when the switchable path is closed. However, when the switchable path is open, the switch device is configured to present a device capacitance at the common port that is approximately equal to the filter capacitance of the filter circuit. In this manner, if the common port is connected to an antenna, the capacitance seen by the antenna from the common port remains substantially unchanged regardless of which of the switchable path is opened or closed.
Abstract:
A front-end module configured to cancel unwanted transmit spectrum at one or more receivers comprises at least one transmitter having a power amplifier and configured to transmit signals to an antenna. The front-end module also comprises at least one receiver to receive the transmit signals, wherein the at least one receiver receives at least a portion of unwanted transmit spectrum. A directional coupler couples at least a portion of a transmit output signal from the power amplifier to provide a coupled transmit output signal to signal conditioning circuitry associated with the at least one receiver and configured to condition the coupled transmit output signal to generate a conditioned transmit signal to provide to the at least one receiver, wherein the conditioned transmit signal at least partially cancels the unwanted transmit spectrum. The signal conditioning circuitry may adjust the amplitude and phase of the coupled transmit output signal.
Abstract:
RF duplexing and methods of operating the same are described herein. In one embodiment, an RF duplexing system may include a control circuit and a duplexer with a first tunable RF filter and second tunable RF filter. The control circuit is operable in a full duplexing transmission mode and a half duplexing transmission mode. The control circuit tunes the first tunable RF filter in the full duplexing transmission mode so that the first tunable RF filter defines a transmission passband and tune the second tunable RF filter so that the second tunable RF filter defines a receive passband. Also, the control circuit tunes one of the tunable RF filters so that the tunable RF filter defines the passband while the other tunable RF filter enhances the passband. In this manner, the tunable RF filters in the duplexer are both utilized to get better performance during the half duplexing mode.
Abstract:
A tunable RF transmit/receive (TX/RX) multiplexer, which includes a tunable RF TX/RX diplexing circuit and a first group of RF RX bandpass filters, is disclosed. The tunable RF TX/RX diplexing circuit has a first RX connection node and a first antenna port, which is coupled to a first RF antenna. Each of the first group of RF RX bandpass filters is coupled to the first RX connection node. At least two of the first group of RF RX bandpass filters simultaneously receive and filter respective RF input signals via the first RX connection node to provide respective filtered RF input signals.
Abstract:
Antenna array calibration for wireless charging is disclosed. A wireless charging system is provided and configured to calibrate antenna elements in a wireless charging station based on a feedback signal provided by a wireless charging device. The antenna elements in the wireless charging station transmit wireless radio frequency (RF) charging signals to the wireless charging device. The wireless charging device provides the feedback signal to the wireless charging station to indicate total RF power in the wireless RF charging signals. The wireless charging station is configured to adjust transmitter phases associated with the antenna elements based on the feedback signal until the total RF power in the wireless RF charging signals is maximized. By calibrating the antenna elements based on the feedback signal, it is possible to achieve phase coherency among the antenna elements without requiring factory calibration.
Abstract:
RF multiplexer circuitry includes a first signal path coupled between a first intermediate node and a common node, a second signal path coupled between a second intermediate node and the common node, first resonator circuitry coupled between the first signal path and ground, and second resonator circuitry coupled between the second signal path and ground. The first resonator circuitry is configured to allow signals within a first frequency pass band to pass between the first intermediate node and the common node, while attenuating signals outside of the first frequency pass band. The first resonator circuitry includes a first LC resonator. The second resonator circuitry is configured to allow signals within a second frequency pass band to pass between the second intermediate node and the common node, while attenuating signals outside of the second frequency pass band.