Abstract:
A compound for an organic photoelectric device is represented by Chemical Formula 1. An organic photoelectric device includes a first electrode and a second electrode facing each other, and an active layer including the compound represented by Chemical Formula 1 between the first electrode and the second electrode.
Abstract:
An organic photoelectronic device includes an anode and a cathode facing each other, a light-absorption layer between the anode and the cathode, and a first auxiliary layer between the cathode and the light-absorption layer, the first auxiliary layer having an energy bandgap of about 3.0 eV to about 4.5 eV, and a difference between a work function of the cathode and a highest occupied molecular orbital (HOMO) energy level of the first auxiliary layer is about 1.5 eV to about 2.0 eV.
Abstract:
Organic photoelectric devices, image sensors, and electronic device, include a first electrode and a second electrode facing each other, and an active layer between the first electrode and the second electrode, wherein the active layer includes a p-type semiconductor compound including a squaraine derivative and an n-type semiconductor compound represented by Chemical Formula 1.
Abstract:
An organic photoelectric device includes a first electrode and a second electrode facing each other and a photoelectric conversion layer between the first electrode and the second electrode, wherein the photoelectric conversion layer includes a p-type semiconductor compound and an n-type semiconductor compound, and the organic photoelectric device satisfies Equation 1, and has external quantum efficiency (EQE) of greater than or equal to about 40% at −3 V.
Abstract:
An image sensor includes a semiconductor substrate integrated with at least a photo-sensing device, a plurality of first electrodes disposed on the semiconductor substrate, an organic photoelectric conversion layer disposed on the first electrodes, and a second electrode disposed on the organic photoelectric conversion layer. The first electrodes include a light-transmitting electrode and a metal layer interposed between the semiconductor substrate and the light-transmitting electrode. The organic photoelectric conversion layer disposed on the first electrodes and the photo-sensing device absorb and/or sense light in different wavelength regions from each other. An electronic device including the image sensor is also provided.
Abstract:
An organic photoelectronic device includes a first electrode and a second electrode facing each other, and an active layer between the first electrode and the second electrode, the active layer including a first compound having a maximum absorption wavelength of about 500 nm to about 600 nm in a visible ray region and a transparent second compound in a visible ray region.
Abstract:
An optoelectronic material includes a first organic molecule and a second organic molecule crosslinked with each other, the first organic molecule and the second organic molecule having wavelength selectivity in a visible ray region.
Abstract:
A compound may be represented by Chemical Formula 1, an organic photoelectronic device may include a first electrode and a second electrode facing each other with an active layer that includes the compound represented by Chemical Formula 1 between the first electrode and the second electrode, and an image sensor may include the organic photoelectronic device.
Abstract:
An organic photoelectronic device includes an anode and a cathode facing each other, and an organic layer between the anode and the cathode, the organic layer including a compound represented by Chemical Formula 1 as a visible light-absorbing body, and at least one of a hole buffer material having an energy bandgap of greater than or equal to about 2.8 eV and a HOMO level between a work function of the anode and a HOMO level of the compound represented by the Chemical Formula 1, and an electron buffer material having an energy bandgap of greater than or equal to about 2.8 eV and a LUMO level between a work function of the cathode and a LUMO level of the compound represented by the Chemical Formula 1.
Abstract:
An organic photoelectronic device includes a first electrode and a second electrode facing each other, and an active layer between the first electrode and the second electrode, the active layer including a compound represented by Chemical Formula 1 or Chemical Formula 2, and a compound represented by Chemical Formula 3.