摘要:
The invention provides a cascade Raman laser including a pumping laser light source that generates pumping light, a cascade Raman resonator having an input-side optical reflector that receives the pumping light and selectively reflects light of each wavelength corresponding to a n-th Stokes ray (n is an integer more than 1) of Raman scattering to the pumping light, a Raman optical fiber that is connected to the input-side optical reflector and generates Raman scattering light at least by the pumping light and an output-side optical reflector that is connected to the Raman optical fiber and selectively reflects light of each wavelength corresponding to the n-th Stokes ray and a blocking device interposed between the pumping laser light source and the cascade Raman resonator and blocks the first Stokes ray generated within the cascade Raman resonator from entering the pumping laser light source side.
摘要:
An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
摘要:
When varying the Raman gain or the gain tilt of an optical amplifier, there is no need to individually adjust the output level of every pump light source or perform overall adjustment, making it possible to obtain a targeted gain with little adjustment. For this purpose, in a pump light source for Raman amplification for outputting a plurality of pump lightwaves for effecting Raman amplification on signal lightwaves input to a light transmission path in the light transmission path: the pump light source for Raman amplification is divided into a shorter wavelength light source and a longer wavelength light source which differ in oscillation wavelength; a plurality of lightwaves emitted from the shorter wavelength light source and a lightwave emitted from the longer wavelength light source are coupled and output; and the plurality of lightwaves output from the shorter wavelength light source or the lightwave output from the longer wavelength light source is collectively controlled to adjust the intensity of the output light.