Abstract:
A heat resistant panel has a bulkhead and a swirler adjacent a combustion chamber. The heat resistant panel comprises an inner panel for facing the combustion chamber and defining a first exit port at an upstream end thereof configured to direct cooling air into the combustor chamber in a first direction adjacent the bulkhead. A second exit port at a downstream end thereof is configured to direct cooling air into the combustor chamber in a second direction with an axial direction defined between the upstream and downstream ends. The first and second directions have opposed axial components. A heat resistant structure and a combustor are also disclosed.
Abstract:
A fuel nozzle for a combustor of a gas turbine engine includes an outer air swirler along an axis, said outer air swirler defines an outer annular air passage between an outer wall and an inner wall, the outer wall defines a convergent-divergent nozzle. An inner air swirler along the axis to define an annular liquid passage therebetween, the annular liquid passage terminates upstream of the convergent-divergent nozzle and an annular fuel gas passage around the axis between the outer air swirler and the inner air swirler.
Abstract:
A wall assembly for use in a combustor of a gas turbine engine includes a support shell with a first inner periphery along an axis and a liner panel with a second inner periphery along the axis. The second inner periphery is smaller than the first inner periphery. Another wall assembly for use in a combustor of a gas turbine engine includes an annular grommet mounted between the support shell and the liner panel. The annular grommet defines a contoured inner wall.
Abstract:
Gas turbine engine systems and methods involving enhanced fuel dispersion are provided. In this regard, a representative method for operating a gas turbine engine includes: providing a gas path through the engine; introducing a spray of fuel along the gas path downstream of a turbine of the engine; and impinging the spray of fuel with a relatively higher velocity flow of air such that atomization of the fuel is increased.