Abstract:
Full color displays that include optical thin film layers with a controllable reflectance are provided. The layers allow for the overall transparency and display properties of each side of the display to be controlled, allowing for augmented reality displays virtual reality displays, two-sided signage, and the like.
Abstract:
Embodiments of the disclosed subject matter provide a device having a substrate, at least one organic light-emitting layer disposed over the substrate, and at least one down-conversion layer. The at least one down-conversion layer may generate the NIR emission by absorbing at least a portion of the light emitted by the at least one organic light emitting layer, and re-emitting light at a longer NIR wavelength or range of wavelengths having a peak NIR emission that may be greater than 700 nm, greater than 750 nm, or greater than 800 nm. An out-of-plane optical density of the at least one down-conversion layer may be less than 0.1 for all wavelengths of light in a range from 400 nm to 600 nm.
Abstract:
OLED-based devices that include at least two colors of emissive regions are provided, in which one region is optically coupled to a microcavity and the other is not. Devices including pixels in which only a portion of sub-pixels within the pixel are coupled to a microcavity are provided.
Abstract:
A hybrid pixel arrangement for a full-color display is provided, which includes an inorganic LED in at least one sub-pixel, and an organic emissive stack in at least one other sub-pixel. In an embodiment, a first sub-pixel is configured to emit a first color, and includes an inorganic LED, a second sub-pixel is configured to emit a second color, and includes a first portion of a first organic emissive stack configured to emit an initial color different from the first color. A third sub-pixel is configured to emit a third color different from the initial color, and includes a second portion of the first organic emissive stack, and a first color altering layer disposed in a stack with the second portion of the first organic emissive stack.
Abstract:
This disclosure relates to reduced power consumption OLED displays at reduced cost for reduced information content applications, such as wearable displays. Image quality for wearable displays can be different than for high information content smart phone displays and TVs, where the wearable display has an architecture that in includes, for example, an all phosphorescent device and/or material system that may be fabricated at reduced cost. The reduced power consumption can facilitate wireless and solar charging.
Abstract:
Full-color pixel arrangements for use in devices such as OLED displays are provided, in which multiple sub-pixels are configured to emit different colors of light, with each sub-pixel having a different optical path length than some or all of the other sub-pixels within the pixel.