Abstract:
In an example embodiment, a system for creating a display from multiple projectors receives as an input a source pixel derived from an image to be displayed. The system generates a scalar-adjusted pixel by applying a scalar for an adjustment range to each channel value in the source pixel, where the scalar depends on whether the source pixel is gray or color. The system modifies each channel value in the scalar-adjusted pixel according to a luminance adjustment curve for a projector, where the luminance adjustment curve depends on whether the source pixel is gray or color. The system generates the luminance adjustment curve from captured calibration images by: (1) creating an interpolated response curve; and (2) generating and inverting a median difference curve based on the interpolated response curve for the projector and the interpolated response curves for the other projectors in the system.
Abstract:
First, a delivery delay, i.e. the time it takes for a content to be captured and a representative frame made available (i.e. delivered), is determined. Second, a video capture interval, i.e. a minimum time delay requirement between stable captured content frames, is determined. In other words, the recycle time-period after which it is safe to change frame content during a capture interval without impacting a prior stable video frame in the pre-delivery stage is determined.
Abstract:
A device, computer-readable medium or method for adjusting pixels of a source image prior to being output to a display device comprising: segmenting the pixels of the source image into spatial groups; assigning an adjustment method to each pixel in a group; creating an adjustment matrix set with rows (or columns) corresponding to the plurality of adjustment methods, and columns (or rows) corresponding to a range of pixel values that exceed a discrete output device value, and adjustment values as entries; receiving a pixel of the source image in a graphics processing unit (GPU) and using the GPU to: determine the pixel's relative location in its spatial group and its corresponding adjustment method; determine the range of pixel values that the value of the pixel exceeds a discrete output device value: select an adjustment value from the adjustment matrix set; and adjust the value of the pixel by the adjustment value.
Abstract:
Methods having corresponding apparatus and computer-readable media comprise: receiving a first digital image representing a first composite projection, wherein each first composite projection comprises a plurality of overlapping component projections, wherein each of the component projections is generated by a respective projector; and generating one or more respective first intensity scaling maps for each of the projectors, comprising, for each of the first intensity scaling maps, identifying a displayed non-overlap projection region for the projector associated with the first intensity scaling map based on the first digital image, and generating a first intensity scaling map for the projector, comprising determining a distance to the nearest pixel within the displayed non-overlap region of the projector for each pixel outside the non-overlap region of the projector, and assigning a first intensity scaling value to each pixel outside the displayed non-overlap region of the projector based on the respective distance.
Abstract:
In general, in one aspect, an embodiment features computer-readable media embodying instructions executable by a computer to perform a method comprising: receiving a pixel for an image to be projected upon a display surface by a plurality of projectors as a composite projection comprising a plurality of partially overlapping component projections each generated by one of the projectors; and selectively increasing a luminance value of the pixel based on the luminance value of the pixel, a location of the pixel in the composite projection, a predetermined black-point threshold value, and a predetermined black-level compensation value.
Abstract:
A method for a communication system comprising a plurality of communication modules passing an audio stream comprising frames of audio data comprises receiving the audio stream at one of the communication modules; selecting one of the frames; identifying second data; replacing a portion of the audio data in the one of the frames with the second data; and transmitting the audio stream comprising the one of the frames of audio data comprising the second data from the one of the communication modules in the communication system.
Abstract:
In an example embodiment, a calibration module in a projector platform establishes an initial configuration of settable exposure attributes for a digital camera. The calibration module projects a preview image onto a surface and captures the projection of the preview image with the digital camera and receives input from a user identifying regions of interest in the capture of the preview image. Next the calibration module projects an exposure image onto the surface. The calibration module then computes a final configuration of exposure attributes for the digital camera by iteratively: (a) capturing the projection of the exposure image with the digital camera; (b) measuring descriptive statistics relating to the color channels of pixels in the regions of interest in the capture of the exposure image; (c) evaluating the descriptive statistics with an evaluation function determined by a calibration process; and (d) establishing a revised configuration of exposure attributes.
Abstract:
In an example embodiment, a system for creating a display from multiple projectors receives as an input a source pixel derived from an image to be displayed. The system generates a scalar-adjusted pixel by applying a scalar for an adjustment range to each channel value in the source pixel, where the scalar depends on whether the source pixel is gray or color. The system modifies each channel value in the scalar-adjusted pixel according to a luminance adjustment curve for a projector, where the luminance adjustment curve depends on whether the source pixel is gray or color. The system generates the luminance adjustment curve from captured calibration images by: (1) creating an interpolated response curve; and (2) generating and inverting a median difference curve based on the interpolated response curve for the projector and the interpolated response curves for the other projectors in the system.
Abstract:
Apparatus having corresponding methods and computer-readable media comprise a first input circuit to receive first data describing a first region of an image, the first region identified based on user markups of the image; a second input circuit to receive second data describing at least one of a second region of the image, the second region identified by an analysis of the image, and a third region of the image, the third region identified by an analysis of an environment that produced the image; and a synthesizer to identify a fourth region of the image based on the first data and the second data.
Abstract:
Computer-readable media having corresponding apparatus and methods embodies instructions executable by a computer to perform a method comprising: receiving a request to stream a video recording; selecting one of a plurality of user types based on the request; selecting one of a plurality of content filters for the video recording based on the selected user type, wherein at least one of the content filters identifies one or more portions of the video recording to be omitted; and streaming the video recording, except for the one or more portions of the video recording to be omitted.