Abstract:
Provided are a passive optical network (PON) multi-channel binding transmission method, a PON node and a storage medium. The PON multi-channel binding transmission method includes: determining a multi-channel transmission mode of to-be-sent data according to a data transmission efficiency and a preset data transmission efficiency threshold, where the data transmission efficiency for determining the multi-channel transmission mode is higher than or equal to the preset data transmission efficiency threshold; and transmitting the to-be-sent data on a data transmission channel binding combination of one or more data transmission channels according to the multi-channel transmission mode.
Abstract:
A method of communication using a forward error correction (FEC) code includes receiving, at an optical line terminal (OLT), performance capability information provided by an optical network unit (ONU), adjusting, at the OLT, a ratio between an FEC code size and a payload size based on the performance capability information, and informing the ONU of the FEC code size selected based on the ratio such that message exchanges between the ONU and the OLT are performed using the FEC code size to which the ratio is applied.
Abstract:
A data transmission and reception method and device are provided. The data transmission method includes: determining wavelength channels for data to be transmitted according to received wavelength channel information of an optical network unit (ONU); dividing the data to be transmitted in a sequence according to the number of the wavelength channels to obtain data packets; identifying the data packets according to the division sequence to obtain sequence identifiers of the data packets; and encapsulating the data packets into downstream frames of the wavelength channels in a one-to-one correspondence according to the sequence identifiers of the data packets, and transmitting the downstream frames of the wavelength channels separately to the ONU.
Abstract:
A reverse power supply management method, apparatus and system are disclosed. The method includes: acquiring reverse power supply information of terminal devices of various links during a process that various terminal devices connected to a local end device stably perform reverse power supply on the local end device; determining reverse power supply management information of the various terminal devices according to the acquired reverse power supply information of the terminal devices of the various links; and transmitting respectively the reverse power supply management information of the various terminal devices to corresponding terminal devices to instruct the various terminal devices to adjust parameters for supplying reverse power to the local end device according to the received reverse power supply management information.
Abstract:
Disclosed is a data transmission method. When it is determined that a transmitting end device and a receiving end device both support a link binding capability, a binding group is established; when data is selected to be transmitted by a binding link in the binding group, the data to be transmitted is encapsulated according to a binding data format and is transmitted through the binding link; and when data is selected to be transmitted by a non-binding link, the data to be transmitted is encapsulated according to a common data format and is transmitted through the non-binding link. Also disclosed are a data transmission apparatus and a computer storage medium.
Abstract:
A data transmission method, multi-medium access point and multi-medium client are disclosed. The method includes: a multi-medium access point (AP) acquiring a current wireless local area network (WLAN) operating mode of an opposite end multi-medium client (Client) from the opposite end multi-medium Client; and the multi-medium AP comparing an address of a target device to which a data packet to be sent is sent with an address of the opposite end multi-medium Client, if they are different, judging whether both a current WLAN operating mode of the multi-medium AP and the current WLAN operating mode of the opposite end multi-medium Client are three-address modes or not, and if yes, determining that the data packet to be sent is prohibited from being sent through a wireless fidelity (WiFi) interface of the multi-medium AP.