Abstract:
An apparatus for determining a state parameter of an object to be monitored comprises a means for providing a plurality of measurement values, wherein the measurement values comprise information relating to the state parameter of the object to be monitored, a comparison means for comparing the measurement value to a predeterminable comparison parameter, wherein the comparison means is formed to output a first comparison signal when a predeterminable number of measurement values falls below the comparison parameter within a measurement interval, or to output a second comparison signal when the predeterminable number of measurement values exceeds or reaches the comparison parameter, wherein the first comparison signal or the second comparison signal indicate the state parameter.
Abstract:
A method is provided for real-time monitoring of tire pressure, wherein the pressure value determined by use of a pressure sensor in the tire is transmitted by an electronic wheel device, without the use of a trigger transmitter fixed on the vehicle, by radio, in short transmission intervals, to a monitoring device installed in the vehicle, only if, at least when the vehicle is not moving, the value is outside a prespecified normal range. When the vehicle is not moving, the electronic wheel device transmits a signal suitable for a system monitoring function, at certain time intervals and, using the same time frame or a whole-number fraction or multiple thereof, carries out a measurement of the tire pressure. The signal has a short transmission duration on the order of 25 μs to 500 μs.
Abstract:
A tire module for sensing wheel and/or tire state variables is provided. The module includes at least one acceleration switch which determines a wheel state variable and/or a tire state variable. A method for sensing wheel state variables and/or tire state variables is also provided. In the method, a characteristic variable which is a measure of the length of the contact area of the tire or the contact area run-through time is determined by an acceleration switch.
Abstract:
Embodiments relate to tire pressure monitoring systems (TPMS). In embodiments, a TPMS comprises a wheel unit and a control unit. Each wheel unit collects acceleration data and uses that data to determine a time at which the wheel unit will be at an angular position desired for signal transmission. Embodiments also include systems and methods for detecting vehicle acceleration by wheel units and determining robustness of acceleration data with respect to noise and vehicle acceleration.
Abstract:
Described is a procedure for controlling the transmission operation of a tire pressure monitoring device (1) arranged in a pneumatic tire of a vehicle, whereby data telegrams are transmitted in a normal mode of operation (13) in first time intervals, and there is a changeover from the normal mode of operation (13) to a pressure drop mode, if an inspection of the pressure signals indicates a drop in the pressure of a drop speed exceeding a pre-defined threshold value, and data telegrams are transmitted in the pressure drop mode in second time intervals, which are shorter than the first time intervals, and the tire pressure monitoring devices (1) are put into a travel starting mode (10, 11, 12) at the beginning of the travel by activation a roll sensor. Data telegrams are transmitted in the travel starting mode in shorter third time intervals as compared to the normal mode of operation.According to the invention, after the changeover into the travel starting mode (10), the process of transmitting a data packet consisting of several data telegrams will start, and a check will be conducted at least once after transmitting the first part of a data packet to determine whether the roll sensor (1b) continues detecting a turning of the wheel (11), and if not, the process of transmission of the data packet will be interrupted (14), whereby the process of transmission of the data packet shall be resumed (12) if the roll sensor (1b) is re-activated within a pre-defined time span (tC1) and the process of transmission of the data packet shall be started all over again (10) if the roll sensor (1b) is re-activated only after the lapse of the pre-defined time span (tC1) and there is a changeover to the normal mode of operation (13) after the complete transmission of the data packet.
Abstract:
Methods of wirelessly communicating are disclosed. In one embodiment, a transmit angle along a circumference of a revolution is determined, a transmit time of the transmit angle based at least in part on a time required to complete a revolution is determined, and a signal is wirelessly transmitted at the transmit angle and the transmit time. Apparatuses and systems are also disclosed.
Abstract:
A mechanical switch is arranged to electrically connect a power source to an electrical component. The switch includes a resilient structure, a first electrically conductive element connected to the power source and a second conductive element connected to the electrical component. At least one of the conductive elements is attached to the resilient structure. The switch is arranged such that the conductive elements are positioned out of contact with one another in the absence of a force being applied to the switch, and the resilient structure is moveable in response to a force applied thereto, the force being applied upon rotation of a tire to which the switch is connected. Upon the application of a force above a predetermined threshold, the resilient structure moves to bring the conductive elements into contact with one another, the contact electrically connecting the power source to the electrical component.
Abstract:
A tire pressure assembly includes a tire pressure sensor for automobile vehicle wheels and a microprocessor for pressure measurement and for control of a radio transmission circuit. The sensor has a module for activating the microprocessor associated with an activation control timer. The timer is programmable and the assembly includes means for programming the timer.
Abstract:
A tire status monitoring system monitors tire conditions, such as tire pressure, temperature, etc., thereby improving automobile safety. The tire status monitoring system provides transmitters, mounted within the vehicle tires, for transmitting tire conditions. A receiver is installed in the vehicle, for analyzing the tire condition data received from each transmitter. The transmitter includes a pressure sensor for sensing air pressure, a temperature sensor for sensing temperature in the tire; a drive detecting sensor for sensing driving velocity; a radio transmission module for modulating the input data into a radio frequency signal to transmit the modulated signal; and a control device for identifying the operation mode by the pressure, temperature and driving velocityinput from the sensors in sensing mode. The control device controls the radio transmission module so that the sensed data can be transmitted at a predetermined period according to the identified operation mode.
Abstract:
A transmitter device includes a rotational direction sensor that generates a specific pattern signal when a corresponding tire rotates. The pattern signal of the left tires is different from the pattern signal of the right tires. A front reception antenna is near the front tires. A rear reception antenna is near the rear tires. A receiver includes a switch circuit that selectively connects the front reception antenna or the rear reception antenna to a controller. When one transmitter device transmits a radio signal, the controller determines which transmitter device is the source of the radio signal in accordance with the level of the signals from the reception antennas and the pattern signal, which is included in the data transmitted by the transmitter device.