Abstract:
Fixing devices for fixing marking material to a web, printing apparatuses and methods of fixing marking material to a web are provided. An exemplary embodiment of the fixing devices includes a first roll including a heated outer surface; a second roll forming a fixing nip with the outer surface of the first roll at which a continuous web on which marking material is disposed is received; a third roll positioned to contact the web prior to entering the fixing nip; and an adjustment mechanism connected to the third roll. The adjustment mechanism is operable to move the third roll to vary a wrap length of the web contacting the outer surface of the first roll upstream from the fixing nip to control pre-heating of the web and marking material by contact with the outer surface prior to entering the fixing nip. The first roll and second roll are operable to apply heat and pressure to the pre-heated web and marking material at the fixing nip to fix the marking material to the web.
Abstract:
Multi-stage fixing systems for fixing toner to a substrate, printing apparatuses and methods of fixing marking material to a substrate are provided. An exemplary embodiment of the multi-stage fixing systems includes a softening device for softening toner applied to a substrate by a marking device; and a fixing device for fixing the softened toner to the substrate. The fixing device includes a first fixing member including a first surface; a first thermal energy source for actively heating the first surface; and a second fixing member including a second surface, the first surface and the second surface form a fixing nip at which the substrate with softened toner is received. The first fixing member and the second fixing member are operable to apply heat and pressure to the substrate and softened toner received at the fixing nip to fix the toner to the substrate.
Abstract:
Fixing systems apply at a fixing nip low or ambient temperatures and moderate pressures or relatively high pressures to a substrate on which marking material is deposited. Fixing systems are integrated with a base print engine of a printing system, or added inline as a module to a printing system. Fixing systems and printing systems containing fixing devices and systems, including multi-stage fixing systems accommodate a broad range of substrates.
Abstract:
Fixing systems, printing apparatuses and methods for fixing marking material to a substrate are provided. An exemplary embodiment of the fixing systems includes a pre-heating device for pre-heating a substrate and marking material disposed on a surface of the substrate; a fixing device disposed downstream from the pre-heating device, the fixing device including fixing members which oppose each other and form a fixing nip; and a first thermal energy source for heating at least one of the fixing members; wherein the fixing members apply pressure and thermal energy to the pre-heated substrate and marking material at the fixing nip to fix the toner to the substrate; and a conditioning device positioned (a) upstream from the pre-heating device, (b) between the pre-heating device and the fixing device, or (c) downstream from the fixing device. The conditioning device includes conditioning members which oppose each other and form a conditioning nip. The conditioning device does not include a thermal energy source that actively heats the conditioning members.
Abstract:
A system to combine the transfer and fixing xerographic steps of a xerographic printer into one, as well as to eliminate the need for an electrical field for transfer. The image is transfixed directly from a photoconductor to the paper or other suitable substrate. Appropriate pressure is applied during this step to cold-pressure fix the toner on the paper, taking into account the type of substrate and type of toner. The cold pressure transfix can be done either directly from a photoreceptor, without an intermediate transfer belt (ITB), eliminating all electrostatic transfer subsystems and a fusing operation. Alternatively, for engines with an intermediate transfer belt (ITB), the cold pressure transfix could replace a needed second transfer and fuser system.
Abstract:
A xerographic marking device includes an intermediate transfer unit, a media transport path and at least one two-color image-on-image (IOI) drum module. Each two-color IOI drum module includes in a process order around a photoreceptor: a) a first charging unit; b) a first exposure unit; c) a first development unit; d) a second charging unit; e) a second exposure unit; and f) a second development unit, wherein the intermediate transfer unit receives a first toned image and a second toned image from the photoreceptor in a single transfer and transfers those toner images to print media to produce a toned image on print media. In various embodiments, specific color pairings are provided.
Abstract:
A system is provided for measuring gloss and spatial dependence of gloss. In a first embodiment, the system comprises: a first illuminator configured to emit a first light beam at a point on a target, thereby producing a generally specular reflectance in a first direction; a second illuminator configured to emit a second light beam at the point on the target, thereby producing generally diffuse reflectance in the first direction; a linear array sensor configured to detect the generally specular reflectance and the generally diffuse reflectance in the first direction; and a processor configured to process the generally specular reflectance and the generally diffuse reflectance detected by the linear array sensor. In a second embodiment, the system comprises: an illuminator configured to emit a beam of light at a point on a target, thereby producing a generally specular reflectance in a first direction and generally diffuse reflectance in a second direction; a first linear array sensor configured to detect the generally specular reflectance in the first direction; a second linear array sensor configured to detect the generally diffuse reflectance in the second direction; and a processor configured to process the generally specular reflectance detected by the first linear array sensor and the generally diffuse reflectance detected by the second linear array sensor.
Abstract:
Exemplary embodiments provide a roll member that includes one or more linear arrays of actuator cells and methods for making and using the roll member. In one embodiment, each linear array of the roll member can be controllably actuated as a group by, e.g., an oscillating voltage, to release toner particles adhered thereto and to form a uniform toner cloud in the development area between the roll member and an image receiving member. The controllable actuation can also aid in the unloading process of the residual toner particles from the roll member. In various embodiments, the uniform toner cloud and/or the controllable unloading process can enable a non-interactive development system for image-on-image full-color printing.
Abstract:
In a system including a plurality of elements, or plurality of subsystems of elements, each performing a process using process control to maintain operation within a latitude of a setpoint and having an output characteristic that contributes to an overall output quality specification of the system, a control method includes setting a desired overall output quality specification, and determining optimum setpoints and latitudes of the plurality of elements, within a range of possible setpoints and latitudes for each element, to achieve the desired overall output quality specification. The control method further includes dynamically re-setting the setpoints and/or re-allocating the latitudes of at least two of the plurality of elements (or subsystems of elements) to compensate for degradation of the attribute caused by variation in the output characteristic of one element within the desired overall output quality specification. The system may be an image forming apparatus, such as a xerographic system, or a modular document processing system. The control method may be stored on a computer readable media.
Abstract:
A system is provided for measuring gloss and spatial dependence of gloss. In a first embodiment, the system comprises: a first illuminator configured to emit a first light beam at a point on a target, thereby producing a generally specular reflectance in a first direction; a second illuminator configured to emit a second light beam at the point on the target, thereby producing generally diffuse reflectance in the first direction; a linear array sensor configured to detect the generally specular reflectance and the generally diffuse reflectance in the first direction; and a processor configured to process the generally specular reflectance and the generally diffuse reflectance detected by the linear array sensor. In a second embodiment, the system comprises: an illuminator configured to emit a beam of light at a point on a target, thereby producing a generally specular reflectance in a first direction and generally diffuse reflectance in a second direction; a first linear array sensor configured to detect the generally specular reflectance in the first direction; a second linear array sensor configured to detect the generally diffuse reflectance in the second direction; and a processor configured to process the generally specular reflectance detected by the first linear array sensor and the generally diffuse reflectance detected by the second linear array sensor.