Abstract:
A scanning arrangement located within a scanning device which is operative for repetitively scanning indicia having parts of different light reflectivity, for example, bar code symbols, and more particularly, pertains to a novel scanning motor of the arrangement for enabling a scan element which is supported by a holder structure mounted on a mylar motor to implement angular oscillatory movements in a linear scan direction between a pair of scan end positions. Hereby, pursuant to the structure of the scanning device, the scanning arrangement is preferably mounted on a single printed circuit board located within a lightweight scanning device of a hand-held housing of gun-shaped configuration which may be readily held and manipulated by a user of the scanning device. The structure of the scanning motor and of the scanning arrangement which are mounted on a printed circuit board is considerably simplified through the construction of the various components being essentially of molded plastic material, and through the utilization of a mylar leaf spring which limits the end scan positions of a scan element or mirror which is oscillated by a read-start device including a permanent magnet mounted on an arm of the holder for the scan mirror.
Abstract:
A laser scanning device for projecting a laser beam against a target having information contained thereon which is to be scanned by the laser beam. The device is in particular a compact bar code reader which incorporates internal unitary structure with a resiliently mounted integral scanning motor for compactly supporting various laser and optics components for modular installation in the device, and which protects at least the integral scanning motor from external impacts and shock loads.
Abstract:
A portable scanning head emits and receives light from a light emitting diode to read symbols, such as bar-code symbols. The optics within the scanner are operative for focusing a light beam and the view of a light sensor in different planes exteriorly of a scanner housing. Imaging means are provided in the unit for imaging a viewing window. The viewing window has an area smaller than that of the scan spot. The system can employ an LED as a light source and tolerate the relatively large-sized (on the order of millimeters) scan spot without sacrificing reading performance since the photodiode "sees" only that portion of the scan spot visible through the viewing window.
Abstract:
A solid-state imager is mounted at a point-of-transaction workstation for capturing images of one- and two-dimensional indicia and is operated at high speed to resist image blurring due to relative movement between the target and the imager. Dedicated hardware assistance and computation resources are allocated to decode multiple, continuous and simultaneous video streams from multiple imagers at the workstation.
Abstract:
A bar code scanning device, system and method that utilizes one or more vertical cavity surface emitting laser diodes for producing at least one laser beam, where the vertical cavity surface emitting laser diodes are disposed on a substrate, and wherein the produced laser beam is substantially an essential single spatial mode laser beam. The bar code scanning device, system and method of present invention also comprise a photodiode attached to the substrate and arranged to receive at least a portion of the beam of light reflected off the scanned bar code or symbol.
Abstract:
Described is a scanner for reading an optical code which includes a light transmission system and an image acquisition system. The light transmission system projects light on a target. The image acquisition system receives light reflected from the target to generate an image of the target. The image acquisition system is arranged to receive the light reflected from the target at a plurality of angles so that, when specular reflection of the target is associated with a first of the plurality of angles, light from a second one of the plurality of angles is available to minimize image degradation associated with the specular reflection.
Abstract:
Scan lines are projected through a single horizontal window of a slot scanner and onto multiple surfaces of a product bearing a bar code symbol to be electro-optically read. The symbol may be in any orientation and on any vertical surface of the product, as well as on the bottom surface of the product.
Abstract:
Methods and apparatus for scanning objects using an imaging scanner comprising a housing, a circuit board comprising a mounted imaging sensor and an optical module positioned in front of the imaging sensor, creating at least part of an optical path between the optical module and the sensor. In an embodiment, the circuit board is positioned in the housing and the imaging sensor is tilted with respect to the optical path.
Abstract:
A raster pattern for reading bar code symbols is created by successively reflecting a light beam off scan mirrors oscillated respectively by a resonant motor drive and by another motor drive driven synchronously with the resonant drive.
Abstract:
A multiple working range scanner includes a collection mirror which is segmented, with each segment having differing optical properties, such as focal length, optical axis, and so on. Differing segments or combinations of segments deal with reflected light received at differing working ranges, and direct it to a photodetector. In another embodiment, beam shaping may be applied to an astigmatic laser beam, for example by means of a part-concave mirror, to create an x waist in the beam which is further from the scanner than the y waist. This provides enhanced performance when the scanner is used on a bar code symbol which is not accurately aligned. In order to provide improved optical alignment within a bar code scanner, the collection mirror may be adjustable both in the x direction and in the y direction.