Abstract:
A knot tying system is presented containing a feeding mechanism, a knot tying device, and a clamp. The feeding mechanism has a drive roller and an idle roller capable of guiding a wire. A truck is connected to the end of the wire, and fed into a guide track, fixed relative to the feeding mechanism. The guide track provides a curved track in the shape of a knot desired. The track has a tube having a wire extraction slot running along the length of the tube, an intersection region where an outer portion of the guide track intersects an inner portion of the guide track, and a slit through the inner portion of the guide track substantially at the intersection region. A sensing and control system may also be present.
Abstract:
A self-contained hardware and software system that allows reliable stereo vision to be performed. The vision hardware for the system, which includes a stereo camera and at least one illumination source that projects a pattern into the camera's field of view, may be contained in a single box. This box may contain mechanisms to allow the box to remain securely and stay in place on a surface such as the top of a display. The vision hardware may contain a physical mechanism that allows the box, and thus the camera's field of view, to be tilted upward or downward in order to ensure that the camera can see what it needs to see.
Abstract:
An interactive video display system allows a physical object to interact with a virtual object. A light source delivers a pattern of invisible light to a three-dimensional space occupied by the physical object. A camera detects invisible light scattered by the physical object. A computer system analyzes information generated by the camera, maps the position of the physical object in the three-dimensional space, and generates a responsive image that includes the virtual object. A display presents the responsive image.
Abstract:
A device allows easy and unencumbered interaction between a person and a computer display system using the person's (or another object's) movement and position as input to the computer. In some configurations, the display can be projected around the user so that that the person's actions are displayed around them. The video camera and projector operate on different wavelengths so that they do not interfere with each other. Uses for such a device include, but are not limited to, interactive lighting effects for people at clubs or events, interactive advertising displays, etc. Computer-generated characters and virtual objects can be made to react to the movements of passers-by, generate interactive ambient lighting for social spaces such as restaurants, lobbies and parks, video game systems and create interactive information spaces and art installations. Patterned illumination and brightness and gradient processing can be used to improve the ability to detect an object against a background of video images.
Abstract:
A method for managing an interactive video display system. A plurality of video spots are displayed on the interactive video display system. Data based on interaction with the interactive video display system corresponding to video spots of the plurality of video spots is gathered. The data is stored, wherein the data is for use in managing presentation of the video spots. By analyzing data relating to different video spots, popularity and other metrics may be determined for the video spots, providing useful information for managing the presentation of the video spots.