Abstract:
A connector assembly may include first and second connector bodies and a terminal splitter. The second connector body may matingly engage the first connector body. The terminal splitter may be received in at least one of the first and second connector bodies. The terminal splitter may include a body portion having first and second wires connected thereto and a blade portion extending from the body portion and including a third wire connected thereto.
Abstract:
An electrical device having an electrical component, which has an electric terminal, and a busbar assembly having a busbar and a frame. The busbar is formed of a strip of conductive material and has first and second busbar sides that are opposite from one another. The frame has a busbar seat and a cover member. The busbar seat extends through a first frame side of the frame. The busbar is received into the busbar seat and seated to the frame such that the first busbar side is spaced apart from the first frame side so that the busbar is contained wholly within the frame. The cover member abuts the second busbar side and defines an irradiation aperture that is configured to receive a laser beam from a laser welder therethrough. A laser weld fuses the busbar to the electric terminal.
Abstract:
The present teachings provide for a connector including a first body and an assurance body. The first body defines a first locking member, a cavity and a slot. The cavity accepts a terminal inserted therein to a first distance. The slot extends into the first body and intersects the cavity. The first locking member is configured to prevent withdrawal of the terminal when the terminal is inserted to the first distance. The assurance body is movable between a preset and a full set position within the slot, and includes a reinforcing member and a second locking member. The full set position, the reinforcing member limits movement of the first locking member to prevent the withdrawal of the terminal, and the second locking member extends into the cavity to prevent withdrawal of the terminal independent of the first locking member.
Abstract:
A power supply system has a battery for supplying power and a lamp having a plurality of filaments therein. Each of the filaments is connected to the battery through a filament power feed line, respectively. A switch is provided on each of the filament power feed line. A fault detection circuit measures a current that flows in a non-active filament and generates a fault signal that shuts off the switch for the filament when the current flows in the non-active filament.
Abstract:
A liquid-cooled charging system for a vehicle is configured to dissipate heat generated during charging (including fast-charging) of an electrically-powered vehicle. The liquid-cooled charging system includes a charging assembly having an interface assembly configured to support a charging plug of a charging station and an energy transfer assembly configured to electrically couple the charging station to the battery of the vehicle during charging. Components of the charging assembly and energy transfer assembly also define a fluid circuit. A coolant system of the liquid-cooled charging system is fluidly connected to the fluid circuit, allowing coolant to flow through the fluid circuit to dissipate heat from the charging assembly components during charging of the vehicle.
Abstract:
An electrical connector assembly includes a connector defining a front end and an opposing rear end. The connector includes a cavity defined therein, the cavity extending from the front end to the rear end and configured to receive at least one of a terminal or an electrical wire therein. The assembly further includes a plug at least partially disposed in the cavity and ultrasonically welded to the connector.
Abstract:
A grommet includes a body portion defining a first aperture and a second aperture. A hollow channel extends between the first aperture and the second aperture. The channel is defined by an interior surface of the body portion. One or more engagement structures are defined by the interior surface of the grommet body portion, and are configured to engage one or more corresponding engagement structures provided about an exterior surface of a mounting structure engaged about and elongated member that is positioned within the hollow channel of the grommet.
Abstract:
A power system includes a battery charge path and capacitor charge path arranged in parallel. During an inrush event, a current limiting element restricts current flow along the battery charge path to relieve battery stress. During the inrush event, current flow between the battery and load along a bypass path is also prevented by a switch element. Under steady state charging conditions, the resistance of the current limiting element decreases, thus increasing current flow between the battery and load along the battery charge path. During steady state conditions, a switch circuit controls operation of the switch element to also allow current flow between the battery and load along the bypass path. The change in the resistance of the current limiting element and/or actuation of the switch element by the switch circuit are optionally based on changes in temperature, and are passively effectuated without requiring an external control input signal.
Abstract:
A charge system for a vehicle includes a battery charge path, a current limiting element, and a capacitor. The current limiting element is arranged in series along the battery charge path, and in parallel relative to the capacitor. During an inrush event, the current limiting element is configured to initially restrict current flow between the battery and the load, increasing the rate and amount with which the capacitor is used to meet the current demands of the load. Thus, the current limiting element allows the battery to gradually increase its supply of current to the load in a manner that does not jeopardize its health. Once a steady state level of charging has been reached, the current limiting element is able to reduce its resistance to current flow, and the battery is able to safely take over as the primary source of current to the load.
Abstract:
A power distribution box assembly can include a power distribution box housing, a fuse block, and a plurality of eyelet terminals. The fuse block can include a stamped busbar assembly, a plurality of studs, and a housing. The stamped busbar assembly can include a main power supply portion, a plurality of fuse elements, and a plurality of terminal connecting portions coupled to the plurality of fuse elements. Each of the plurality of terminal connecting portions can: (i) extend from its respective fuse element in a terminal direction that is orthogonal to both directions that the main power supply portion and the fuse elements extend.