Abstract:
An example method stores a nomadic service designator and an operating mode designator in association with a public user identifier. The nomadic service designator indicates whether an IP device is allowed to access VoIP services from different network locations. The public user identifier facilitates establishing a call with the IP device. The operating mode designator indicates when the IP device is in a suspended operating mode and an unrestricted mode. The suspended operating mode restricts the IP device to a subset of communication services associated with a service subscription of the IP device, and to a 911 service. The unrestricted operating mode is based on a registered geographic location associated with the IP device being a current geographic location of the IP device, and is based on a service provider being able to provide an E911 service including a location-identification service at the current geographic location of the IP device.
Abstract:
According to one method for preserving stable calls during failover, during a dialog between two user endpoints, a determination is made whether a standby call processor has become operational, such as when a corresponding primary call processor is in fault. Responsive to determining that the standby call processor has become operational, a signaling protocol message is received from a requester. A determination is made whether the message includes an in-dialog signaling protocol request. Responsive to determining that the message includes the in-dialog request, a determination is made whether a call state associated with the dialog is found in memory. Responsive to determining that the call state associated with the dialog is not found in memory, a non-call terminating error response is made responding to the in-dialog request. The non-call terminating error response may cause the requester to terminate the in-dialog request but not terminate the dialog.
Abstract:
A mechanism controls global synchronization, or registration floods, that may result when a large number of endpoints in a Voice over Internet Protocol (VoIP) network such as an Internet Protocol Multimedia Subsystem (IMS) come online simultaneously after a catastrophic failure. The mechanism allows the Domain Name System (DNS) infrastructure to efficiently control the overload condition by registering user end points with backup border elements, and by staggering and by randomizing the time-to-live (TTL) parameter in registrations with backup border elements.