Abstract:
A method includes: selecting, from M polar codes of a same code length and code rate, a polar code corresponding to an actual code rate for a first transmission, and encoding an information bit sequence by using the polar code to obtain encoded bits; and performing rate matching on the encoded bits to generate to-be-sent bits. Different from a traditional HARQ using one polar code, in this embodiment, a polar code corresponding to the actual code rate for the first transmission is selected from the M polar codes during the initial transmission, so that a different polar code can be selected adaptively according to the actual code rate for the first transmission.
Abstract:
The present invention relates to the field of communications network technologies, and discloses a polar code retransmission method and apparatus, which can improve HARQ performance. In embodiments of the present invention, some information bits of a first polar code are encoded to obtain a second polar code, where the first polar code is a code word that is transmitted for the first time; modulo-2 addition is performed on the first polar code and the second polar code to obtain a third polar code; and the third polar code is sent as a to-be-retransmitted code word. The solutions provided in the embodiments of the present invention are applicable when a polar code is retransmitted.
Abstract:
Embodiments of the present invention provide a method and a device for decoding Polar codes. A reliable subset is extracted from an information bit set of the Polar codes, where reliability of information bits in the reliable subset is higher than reliability of other information bits. The method includes: obtaining a probability value or an LLR of a current decoding bit of the Polar codes; when the current decoding bit belongs to the reliable subset, performing judgment according to the probability value or the LLR of the current decoding bit to determine a decoding value of the current decoding bit, keeping the number of decoding paths of the Polar codes unchanged, and modifying probability values of all the decoding paths by using the probability value or the LLR of the current decoding bit.
Abstract:
The present invention provides an encoding method and an encoding device. The method includes: dividing to-be-encoded input data into M parts according to the number of levels of concatenated Polar encoding, where M is the number of levels of concatenated Polar encoding; and performing Polar encoding for information bits of each level of Polar encoding level by level to obtain Polar-encoded data of the input data, where each part of data obtained through the dividing and output bits of a previous level of Polar encoding serve together as information bits of a next level of Polar encoding. Embodiments of the present invention can improve performance of Polar codes.
Abstract:
Embodiments of the present disclosure provide a multi-frequency band antenna feeder sharing method and a base station radio frequency unit. The method includes: receiving a signal of a frequency band 1 and a signal of a frequency band 2 through an antenna feeder, transmitting the signals to a band-pass filter and filtering the signals so as to obtain the signal of the frequency band 2, and transmitting the signal of the frequency band 2 to a third radio frequency port through a combiner port; and/or, sending the signal of the frequency band 2 to the combiner port through the third radio frequency port, transmitting the signal of the frequency band 2 that has passed through the band-pass filter to the port of the first radio frequency channel, and sending out the signal of the frequency band 2, together with the signal of the frequency band 1.
Abstract:
An interference alignment method, an interference alignment device, and a multi-channel communication system are provided. The method includes: obtaining channel matrix in a multi-channel communication system; determining a first desired signal and a second desired signal of the multi-channel communication system according to the channel matrix; obtaining precoding vectors and receive vectors, after a first receive signal is filtered by a receive vector corresponding to the first desired signal, a signal formed by superposing interference signals included therein has a feature of a lattice constellation pattern, and that at a receiver corresponding to the second desired signal, after a second receive signal is filtered by a receive vector corresponding to the second desired signal, interference signals included therein are canceled, where the first receive signal and the second receive signal are transmit signals sent to the corresponding receivers after precoding processing is performed at transmitters by using corresponding precoding vectors.
Abstract:
The embodiments of the present invention provide a decoding method and a decoding device for a polar code cascaded with CRC. The decoding method includes: performing SC-List decoding on a Polar code according to the number of survival paths L to obtain L survival paths, where L is a positive integer; performing cyclic redundancy check on the L survival paths respectively; and increasing the number of survival paths when all the L survival paths fail to pass the cyclic redundancy check, and acquiring a decoding result of the Polar code according to the increased number of survival paths. In the embodiments of the present invention, the path number of survival paths is adjusted according to a result of the cyclic redundancy check, so as to output paths as much as possible, where the output paths can pass the cyclic redundancy check, thereby improving decoding performance.
Abstract:
A precoding method and apparatus are disclosed. The corresponding method includes: constructing a Lagrange function according to a precoding matrix, transmit power, a receive filter matrix and a weighting matrix, and obtaining a Lagrange multiplier by using the Lagrange function; updating the precoding matrix according to the Lagrange multiplier to obtain an iterative precoding matrix and an iterative receive filter matrix; obtaining an iterative Lagrange multiplier according to the iterative precoding matrix, the transmit power, the iterative receive filter matrix and the weighting matrix, and repeating the above steps in an iterative manner of updating the iterative precoding matrix according to the iterative Lagrange multiplier till the iterative precoding matrix converges to a threshold; and precoding information to be transmitted according to the iterative precoding matrix converging to the threshold.
Abstract:
An interference alignment method, an interference alignment device, and a multi-channel communication system are provided. The method includes: obtaining channel matrix in a multi-channel communication system; determining a first desired signal and a second desired signal of the multi-channel communication system according to the channel matrix; obtaining precoding vectors and receive vectors, after a first receive signal is filtered by a receive vector corresponding to the first desired signal, a signal formed by superposing interference signals included therein has a feature of a lattice constellation pattern, and that at a receiver corresponding to the second desired signal, after a second receive signal is filtered by a receive vector corresponding to the second desired signal, interference signals included therein are canceled, where the first receive signal and the second receive signal are transmit signals sent to the corresponding receivers after precoding processing is performed at transmitters by using corresponding precoding vectors.
Abstract:
Embodiments of the present disclosure disclose obtaining to-be-encoded first information that includes first and second information bit sets. The bits included in the first information bit set are obtained through decoding by a plurality of terminal devices. The bits included in the second information bit set are able to be obtained through decoding by some of the plurality of terminal devices. Polar encoding is first performed on the first information bit set to obtain first encoded information. Polar encoding is then performed on the second information bit set based on the first encoded information to obtain second encoded information.