Abstract:
Disclosed are an auto exposure system and a method thereof. The auto exposure system may check whether an exposure target value is correct using brightness information of an input image. When the exposure target value is not proper, the auto exposure system may readjust the exposure target value through analyzing the brightness information of the input image. Also, the auto exposure system may correct exposure of the input image based on an exposure correction value according to the adjusted exposure target value, thereby adjusting the exposure of the input image to be proper. Also, exposure information of the input image may be easily obtained from a final exposure target value.
Abstract:
Provided are a method and mobile communication terminal for handover in a mobile communication network including at least one mobile communication base station and a communication satellite. The handover method includes the steps of: (a) calculating a signal power received from a currently communicating mobile communication base station among the at least one mobile communication base station; (b) calculating a signal power received from each of the communication satellite and the at least one mobile communication base station except the base station of step (a); (c) selecting a mobile communication base station having the highest among the calculated signal powers except the signal power received from the communication satellite and the signal power received from the base station of step (a); and (d) when the signal power calculated in step (a) is below a predetermined minimum handover power, a difference between the signal power of the selected mobile communication base station and the signal power calculated in step (a) is equal to or below a first terrestrial handover sensitivity, and there is no other mobile communication base station capable of communicating with the mobile communication terminal, performing handover to the communication satellite.
Abstract:
A method of automatically controlling and verifying telecommands in a satellite control system in which a satellite status analyzing/processing unit and a telecommand producing/executing unit are closely connected with each other to share a knowledge base with information regarding the telecommands. The present method comprises the steps of transmitting the telecommands to a satellite for the control thereof, receiving the resultant telemetry from the satellite, analyzing the received telemetry, inferring telemetry values corresponding to the transmitted telecommands from the information in the knowledge base, verifying a telecommand execution status of the satellite on the basis of the analyzed result and inferred telemetry values and producing a control command upon recognizing an abnormal status of the satellite in accordance with the verified result. According to the present invention, an operator needs not check data one by one to determine whether the telecommand execution is normal or not. Therefore, the present invention has the effect of enhancing the performance and reliability of the satellite control system.