GROUP-BASED BEAM MANAGEMENT
    62.
    发明申请

    公开(公告)号:US20210152233A1

    公开(公告)日:2021-05-20

    申请号:US16953469

    申请日:2020-11-20

    Abstract: A WTRU may include a memory and a processor. The processor may be configured to receive beam grouping information from a gNB or transmission and reception point (TRP). The beam grouping information may indicate a group of beams that the WTRU may report using group-based reporting. The group-based reporting may be a reduced level of reporting compared to a beam-based reporting. The group-based report may include measurement information for a representative beam. The representative beam may be one of the beams in the group or represents an average of the beams in the group. Alternatively, the representative beam may be a beam that has a maximum measurement value compared to other beams in the group. The group-based report may include a reference signal received power (RSRP) for the representative beam and a differential RSRP for each additional beamin the beam group.

    RADIO RANDOM ACCESS IN BEAMFORMING SYSTEMS

    公开(公告)号:US20210120535A1

    公开(公告)日:2021-04-22

    申请号:US17085903

    申请日:2020-10-30

    Abstract: A wireless transmit/receive unit (WTRU) may receive, from a base station, information concerning an association between synchronization signal/physical broadcast channel (SS/PBCH) block transmissions and physical random access channel (PRACH) resources. In an example, each SS/PBCH block transmission may be associated with a transmission beam of the base station. The WTRU may receive the SS/PBCH block transmissions and select one of the transmissions. Further, the WTRU may compare a reference signal received power (RSRP) associated with the selected transmission to a threshold. The WTRU may then determine between performing a random access procedure of a first type and a second type based on the comparison. Also, the WTRU may select a PRACH resource based on the selected transmission and the information concerning the association between the transmissions and the PRACH resources. Moreover, the WTRU may transmit a PRACH preamble, for the determined random access procedure, using the selected PRACH resource.

    METHOD AND APPARATUS FOR LOW-DENSITY PARITY-CHECK (LDPC) CODING

    公开(公告)号:US20200235759A1

    公开(公告)日:2020-07-23

    申请号:US16482880

    申请日:2018-01-31

    Abstract: An apparatus and method are described. The apparatus includes a transceiver and processor, which attach transport block (TB) level CRC bits to a TB, select an LDPC base graph (BG) based on a code rate (CR) and TB size of the TB including TB level CRC bits, determine a number of code blocks (CBs) to use for segmenting the TB including TB level CRC bits depending on the selected LDPC BG, determine a single CB size for each of the CBs based on the number of CBs, segment the TB including TB level CRC bits into the CBs based on the number of CBs and CB size, pad zeros to a last CB of the CBs in the segmented TB, attach CB level CRC bits to each CB in the segmented TB, encode each CB in the segmented TB using the selected LDPC base graph, and transmit the encoded CBs.

    TWO-STAGE SCRAMBLING FOR POLAR CODED PDCCH TRANSMISSION

    公开(公告)号:US20200228236A1

    公开(公告)日:2020-07-16

    申请号:US16620354

    申请日:2018-06-13

    Abstract: A wireless transmit receive unit (WTRU) may receive a Physical Downlink Control Channel (PDCCH) transmission and perform early termination on the PDCCH transmission. Transmissions that are not intended for the WTRU may be terminated. The WTRU may perform a first decode of the PDCCH transmission based on a first scrambling sequence. The first scrambling sequence may be generated using a Gold sequence, which may be initialized based on a WTRU identifier. If the first decode is not successful, the WTRU may determine that the PDCCH transmission is not intended for the WTRU. The WTRU may perform an assistance bit added (ABA) polar decode of the PDCCH transmission based on a second scrambling sequence (e.g., a cell radio network temporary ID (C-RNTI)). The WTRU may perform a CRC on the output of the ABA polar decode to obtain downlink control information (DCI).

    SS BLOCK METHODS AND PROCEDURES FOR NR-U
    66.
    发明申请

    公开(公告)号:US20200053781A1

    公开(公告)日:2020-02-13

    申请号:US16534550

    申请日:2019-08-07

    Abstract: Methods, systems, and apparatuses for use in wireless communication are disclosed. A method of communication on an unlicensed band may include detecting a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block comprising a demodulation references signal (DMRS), a synchronization signal (SS), and a PBCH payload. A SS/PBCH block index may be obtained from one of the DMRS and the PBCH payload. A cyclic rotation indicator may be obtained from the SS/PBCH block (e.g., from the DMRS, the SS, and/or the PBCH payload). A determination may be made that the cyclic rotation indicator indicates an on state and a time gap may be obtained from one of the DMRS and the PBCH payload, based on the determination. Frame timing may be determined based on the cyclic rotation indicator, the SS/PBCH block index, and the time gap.

    PHYSICAL RANDOM ACCESS FOR NR-U
    67.
    发明申请

    公开(公告)号:US20200053772A1

    公开(公告)日:2020-02-13

    申请号:US16535140

    申请日:2019-08-08

    Abstract: Systems, methods, and instrumentalities are disclosed herein associated with physical random access, e.g., for new radio (NR) implementations such as NR-unlicensed (NR-U). A wireless transmit/receive unit (WTRU) may switch a position of a PRACH occasion (RO) with another RO to reduce latency (e.g., so that a WTRU can transmit a preamble without performing a LBT operation). Systems, methods, and instrumentalities are disclosed for reserving a listen-before-talk (LBT) procedure gap at the beginning of a random access channel (RACH) occasion (RO) in New Radio (NR) unlicensed (NR-U) systems. The present systems, methods, and instrumentalities may (e.g., may also) be applied to consecutive ROs. This may include reserving a LBT gap for example, for a RO transmission (e.g., for each of the consecutive ROs). Low latency RACH for NR-U systems may be supported (e.g., mapping rules for the RO may be implemented).

    ADVANCED POLAR CODES FOR CONTROL CHANNEL
    68.
    发明申请

    公开(公告)号:US20190393987A1

    公开(公告)日:2019-12-26

    申请号:US16482025

    申请日:2018-02-01

    Abstract: Systems, methods, and instrumentalities may be provided for an infrastructure node to transmit and a wireless transmit/receive unit (WTRU) or a group of WTRUs to receive a first downlink control information (DCI) a second DCI. The first DCI may carry time critical DCI, whereas the second DCI may carry non-time critical DCI. Each of the first DCI and the second DCI may be polar encoded. The second DCI may be polar encoded may be received with an embedded first DCI as part of frozen bits. The second DCI may be mapped to a plurality of bit channels having higher reliability than the plurality of bit channels to which the embedded first DCI is mapped. The WTRU may discard the decoded first DCI, if decoding of the DCI using the embedded first DCI is not successful.

    Joint channel coding and modulation in wireless systems

    公开(公告)号:US10419085B2

    公开(公告)日:2019-09-17

    申请号:US16099965

    申请日:2017-05-09

    Abstract: Methods are described for performing joint coded spatial and/or antenna based modulation. A first device may receive, from a second device, one or more pilot signals associated with one or more transmit antennas, antenna patterns, and/or antenna polarizations. The first device may determine channel related information associated with an antenna pair based on the pilot signals. The channel related information may include one or more channel cross correlation coefficients. The first device may determine a set-partition, for example, based on the channel related information. The first device may configure a dynamically configurable Trellis Coded Modulation (TCM) decoder based on the determined set-partition.

    PHY LAYER MULTIPLEXING OF DIFFERENT TYPES OF TRAFFIC IN 5G SYSTEMS

    公开(公告)号:US20190165906A1

    公开(公告)日:2019-05-30

    申请号:US16090767

    申请日:2017-04-07

    Abstract: Systems, methods, and instrumentalities are disclosed for physical (PHY) layer multiplexing of different types of traffic in 5G systems. A device may receive a communication. The communication may include a first traffic type. The device may monitor the communication for an indication that the communication includes a second traffic type that is multiplexed with and/or punctures the first traffic type. An indicator received in the communication and detected by the monitoring may indicate where the second traffic type is located in the communication. The first traffic type and the second traffic type may be multiplexed at a resource element (RE) level. For example, a first traffic type may be punctured by a second traffic type at the RE level. The device may de code one or more of the first or second traffic types in the communication based on the indication.

Patent Agency Ranking