摘要:
Pilot transmission and channel estimation techniques for an OFDM system with excess delay spread are described. To mitigate the deleterious effects of excess delay spread, time filtering is utilized. Time filtering is utilized to combat excess delay spread effects in channel estimation. The time filtering is performed in the presence of staggered pilots and helps in improving the channel estimate in the presence of excess delay spread.
摘要:
Systems and methodologies are described that facilitate monitoring transmitter performance in a wireless communication environment. A signal analyzer can be used to sample the output of a transmitter and the sampled signal can be propagated to a processor. The processor can generate frequency domain channel estimates for the subcarriers. If the transmitted modulation symbols are unknown, the processor can determine the modulation symbols and use the determined modulation symbols to calculate the channel estimates. The channel estimates can be averaged and used to generate various metrics to evaluate the transmitter performance.
摘要:
Systems and methodologies are described that facilitate monitoring transmitter performance in a wireless communication environment. If the received modulation symbols are unknown during transmitter monitoring, it may be necessary to determine the modulation symbols for each subcarrier. The modulation types can be evaluated over a subset of subcarriers having a consistent modulation type, to reduce the possibility of an erroneous modulation type determination to an extremely low level. A metric can be generated for each modulation type that indicates the likelihood of a particular modulation type for the subset of subcarriers. The modulation type can be selected based upon the metric and modulation symbols consistent with the modulation type can be used for the subset of subcarriers.
摘要:
A system and method are provided for generating bit log likelihood ratio (LLR) values for two-layered Quadrature Phase-Shift Keying (QPSK) turbo decoding in a wireless communications user terminal (UT). The method includes receiving a two-layered QPSK signal with an energy ratio that is unknown, but typically defined as either k12 or k22. The method selects a mismatched energy ratio (k2) between k12 and k22, and generating bit LLR values for two-layered QPSK turbo decoding, using the mismatched k2 energy ratio. For example, if the received two-layered QPSK signal is known to have an energy ratio of about 4 or about 6.25. Then, k2 is selected to be about 5.0625. Alternately stated, the mismatched k2 energy ratio in selected by determining the approximate midpoint between k12 and k22.
摘要:
Systems and methodologies are described that facilitate monitoring transmitter performance in a wireless communication environment. A signal analyzer can be used to sample the output of a transmitter and the sampled signal can be propagated to a processor. The processor can generate frequency domain channel estimates for the subcarriers. If the transmitted modulation symbols are unknown, the processor can determine the modulation symbols and use the determined modulation symbols to calculate the channel estimates. The channel estimates can be averaged and used to generate various metrics to evaluate the transmitter performance.
摘要:
The claimed subject matter relates to estimating noise variance associated with a transmitter. For example, the noise variance can be estimated in connection with determining performance parameters associated with a transmitter. Determining noise variance can include the acts of estimating phase alteration of a received signal through utilization of a least squares-based phase estimation algorithm. Determining noise variance can also include the act of determining an unbiased estimation of noise variance as a function of the estimated phase alteration.
摘要:
A system and method are provided for generating bit log likelihood ratio (LLR) values for two-layered Quadrature Phase-Shift Keying (QPSK) turbo decoding in a wireless communications user terminal (UT). The method includes receiving a two-layered QPSK signal with an energy ratio that is unknown, but typically defined as either k12 or k22. The method selects a mismatched energy ratio (k2) between k12 and k22, and generating bit LLR values for two-layered QPSK turbo decoding, using the mismatched k2 energy ratio. For example, if the received two-layered QPSK signal is known to have an energy ratio of about 4 or about 6.25. Then, k2 is selected to be about 5.0625. Alternately stated, the mismatched k2 energy ratio in selected by determining the approximate midpoint between k12 and k22.
摘要:
The claimed subject matter relates to estimating noise variance associated with a transmitter. For example, the noise variance can be estimated in connection with determining performance parameters associated with a transmitter. Determining noise variance can include the acts of estimating phase alteration of a received signal through utilization of a least squares-based phase estimation algorithm. Determining noise variance can also include the act of determining an unbiased estimation of noise variance as a function of the estimated phase alteration.
摘要:
A system and method are provided for generating bit log likelihood ratio (LLR) values for two-layered Quadrature Phase-Shift Keying (QPSK) turbo decoding in a wireless communications user terminal (UT). The method includes receiving a two-layered QPSK signal with an energy ratio that is unknown, but typically defined as either k12 or k22. The method selects a mismatched energy ratio (k2) between k12 and k22, and generating bit LLR values for two-layered QPSK turbo decoding, using the mismatched k2 energy ratio. For example, if the received two-layered QPSK signal is known to have an energy ratio of about 4 or about 6.25. Then, k2 is selected to be about 5.0625. Alternately stated, the mismatched k2 energy ratio in selected by determining the approximate midpoint between k12 and k22.
摘要:
A system and method are provided for generating bit log likelihood ratio (LLR) values for two-layered Quadrature Phase-Shift Keying (QPSK) turbo decoding in a wireless communications user terminal (UT). The method includes receiving a two-layered QPSK signal with an energy ratio that is unknown, but typically defined as either k12 or k22. The method selects a mismatched energy ratio (k2) between k12 and k22, and generating bit LLR values for two-layered QPSK turbo decoding, using the mismatched k2 energy ratio. For example, if the received two-layered QPSK signal is known to have an energy ratio of about 4 or about 6.25. Then, k2 is selected to be about 5.0625. Alternately stated, the mismatched k2 energy ratio in selected by determining the approximate midpoint between k12 and k22.