Abstract:
A technique includes obtaining different sets of data, which are provided by seismic sensors that share a tow line in common. Each data set is associated with a different spatial sampling interval. The technique includes processing the different sets of data to generate a signal that is indicative of a seismic event that is detected by the set of towed seismic sensors. The processing includes using the different spatial sampling intervals to at least partially eliminate noise from the signal.
Abstract:
A method of matching the impulse response of a hydrophone and the impulse of a geophone accelerometer comprises perfroming a calculus operation upon the response of one of the hydrophone and the accelerometer. A filter is then derived from the output of the calculus operation and the response of the other of the hydrophone and the accelerometer. The filter may then be used to match seismic data acquired by the one of the hydrophone and the accelerometer to seismic data acquired by the other of the hydrophone and the accelerometer. The calculus operation may comprise differentiating the hydrophone response, or integrating the accelerometer impulse response.
Abstract:
A method of performing a seismic survey of a hydrocarbon reservoir in the earth formations beneath a body of water includes deploying a seismic cable from a drum carried by a remotely operated vehicle on the seabed. The cable is deployed into a lined trench, which is formed either concurrently with cable deployment or during a previous survey, to ensure good repeatability of successive surveys of the reservoir, in order to enable changes in characteristics of the reservoir, eg due to depletion, to be monitored.
Abstract:
A method of performing a seismic survey of a hydrocarbon reservoir in the earth formations beneath a body of water includes deploying a seismic cable from a drum carried by a remotely operated vehicle on the seabed. The cable is deployed into a lined trench, which is formed either concurrently with cable deployment or during a previous survey, to ensure good repeatability of successive surveys of the reservoir, in order to enable changes in characteristics of the reservoir, eg due to depletion, to be monitored.
Abstract:
A method of performing a seismic survey of a hydrocarbon reservoir in the earth formations beneath a body of water includes deploying a seismic cable from a drum carried by a remotely operated vehicle on the seabed. The cable is deployed into a lined trench, which is formed either concurrently with cable deployment or during a previous survey, to ensure good repeatability of successive surveys of the reservoir, in order to enable changes in characteristics of the reservoir, eg due to depletion, to be monitored.