摘要:
In accordance with an example embodiment of the present invention, there is provided a user equipment configured to receive local network connectivity information over a first wireless interface, determine a scanning strategy based at least in part on the received information, and discover a local network over a second wireless interface using at least in part the determined scanning strategy.
摘要:
Various example embodiments are disclosed relating to wireless networks, such as relay networks or multi-hop networks, and also relating to control signaling techniques for wireless networks. In an example embodiment, a method or technique may include transmitting (e.g., data or control) frames in a downlink direction and control frames in an uplink direction during a first phase, and transmitting (e.g., data or control) frames in an uplink direction and control frames in a downlink direction during a second phase.
摘要:
A wireless node, such as a relay node, has different operating modes for unicast and broadcast/multicast subchannels. For unicast services the phase offsets of those relay nodes engaged in a cooperative transmission are optimized for the subchannels used for unicast services. Alternatively, when no feedback is available and an open loop MIMO or MIMO-type scheme is in use, retransmissions are performed in such a way that a destination (e.g., user terminal) receives effectively a distributed space-time block code. For the broadcast/multicast services time varying random phase offsets may be employed for the subchannels used for broadcast services. For reliable high data rate broadcast transmissions a cooperative retransmission scheme that effectively forms distributed space-time block codes may be used.
摘要:
An approach for providing interference measurements for device-to-device communication is disclosed. A logic generates a control signal to instruct a plurality of stations to perform measurement relating to interference or path loss by the stations. The logic then receives measurement information from the stations and determines, based on the measurement information, whether resources are to be scheduled to provide direct communication between two of the stations.
摘要:
A wireless node, such as a relay node, has different operating modes for unicast and broadcast/multicast subchannels. For unicast services the phase offsets of those relay nodes engaged in a cooperative transmission are optimized for the subchannels used for unicast services. Alternatively, when no feedback is available and an open loop MIMO or MIMO-type scheme is in use, retransmissions are performed in such a way that a destination (e.g., user terminal) receives effectively a distributed space-time block code. For the broadcast/multicast services time varying random phase offsets may be employed for the subchannels used for broadcast services. For reliable high data rate broadcast transmissions a cooperative retransmission scheme that effectively forms distributed space-time block codes may be used.
摘要:
Various example embodiments are disclosed relating to wireless networks, such as relay networks or multi-hop networks. According to an example embodiment, a wireless network may be provided that may include one or more relay nodes operating in a decode-and-forward (DF) mode, and one or more relay nodes operating in an amplify-and-forward (AF) mode. According to an example embodiment, a block of data may be received at a relay node via a first carrier frequency from a first wireless node. For example, the first wireless node may be operating in a DF mode. The block of data may be forwarded from the relay node to a second wireless node via a second carrier frequency using an amplify-and-forward (AF) mode.
摘要:
Operators of wireless communication systems operating in the same geographic area are able to build networks on neighboring/adjacent bands, even if one of the systems is using a TDD mode and the other systems is using a FDD mode without using excessive large guard bands. A beaconing mechanism with signaling is used to impose an exclusion zone and power restriction, antenna direction, and other operational parameters. A newcomer operator is able to get an accurate knowledge of the interference to and from the sites of the AP of the existing operator so that the newcomer can deploy his APs without causing interference to the existing APs.