Abstract:
A raman spectroscopy method of measuring melamine contents in dairy products having different matrixes. The method includes: (a) establishing a database of characteristic curves of dairy products having different matrixes; (b) taking several copies of the dairy products having one certain unknown matrix and adding melamine standard solutions having different concentrations therein, to obtain a series of dairy product samples in which the relative concentrations of the melamine are known; (c) performing raman spectrum testing analysis and obtaining corresponding characteristic peak intensities to obtain a slope of the characteristic curve showing variation of the characteristic peak intensities with the relative concentrations of the melamine; (d) searching the database of step (a) using the slope of the characteristic curve of the dairy product samples to find a matching characteristic curve, and (e) calculating concentration of melamine in the dairy products by using the matched characteristic curve and the characteristic peak intensity.
Abstract:
A CT apparatus without a gantry. The CT apparatus includes a scanning passage; a stationary X-ray source arranged around the scanning passage and including a plurality of ray emission focal spots; and a plurality of stationary detector modules arranged around the scanning passage and disposed opposite the X-ray source. At least some of the plurality of detector modules may be arranged substantially in an L shape, a semicircular shape, a U shape, an arc shape, a parabolic shape, or a curve shape when viewed in a plane intersecting the scanning passage. The invention ensures that the stationary gantry type CT system has a small size, and a high data identification accuracy.
Abstract:
A stationary CT apparatus and a method of controlling the same. The stationary CT apparatus includes: a scanning passage; a stationary carbon nanotube X-ray source arranged around the scanning passage and comprising a plurality of ray emission focal spots; and a plurality of stationary detector modules arranged around the scanning passage and disposed opposite the X-ray source. At least some of the plurality of detector modules are arranged in a substantially L shape or a substantially Π shape when viewed in a plane intersecting the scanning passage. Reconstruction of the CT apparatus without a rotary gantry is achieved and special substances in an object under inspection is identified by optimizing design of the carbon nanotube X-ray source and the detector device. The invention ensures that the stationary gantry type CT system has a small size and a high accuracy and is particularly suitable for safety inspection of baggage.
Abstract:
A calibration assembly, including: a base; and a plurality of calibration wires dispersedly connected to the base. An absorption capacity of the calibration wire for X rays is greater than that of the base for X rays. Through a specific structure design of a plurality of calibration wires in the calibration assembly, the calibration wires are dispersedly connected to the base, and taking advantage of the characteristics that the absorption capacity of the calibration wire for X rays is greater than that of the base for X rays, the calibration wires are applied to the calibration phantom, and the calibration phantom is scanned in the scanning system. By continuously adjusting the geometric parameter values in the imaging method, the optimal geometric parameter values that are closest to the real scanning system structure may be obtained, thereby improving the imaging effect of the scanning system.
Abstract:
An inspection device includes: an inspection channel, through which the object enters and exits the inspection device; an imaging system, including a radiation source used to generate a ray, the radiation source is disposed on one side of the inspection channel, and the ray at least forms a main beam surface applicable to scan and inspect the object; and a detector used to receive the ray passing through the object, the detector is disposed on the other side of the inspection channel to form an inspection region between the radiation source and the detector; and a posture adjustment structure disposed in the inspection region and used to adjust a posture of the object in the inspection region. The object has an inspection surface. The posture adjustment structure may adjust the posture of the object, so that the inspection surface and the main beam surface are in the same plane.
Abstract:
Provided are an inspection method, and an inspection system including: at least one ray source; a detector assembly and a conveying device. At least one ray source and the detector assembly may move in a traveling direction relative to the conveying device, so that the to-be-inspected object may enter an inspection region. When viewed along a central axis of the inspection region, at least one ray source may translate between scanning positions, and a translation distance of at least one ray source between two adjacent scanning positions is greater than a spacing between adjacent target spots of each ray source. When at least one ray source is located at one scanning position, at least one ray source and the detector assembly move in the traveling direction and at least one ray source emits X-rays. After moving a predetermined distance, at least one ray source translates to another scanning position.
Abstract:
A radiographic inspection device and a method of inspecting an object are provided. The radiographic inspection device includes: a support frame, where an inspection space applicable to inspect an object is formed within the support frame, and the inspection space has an opening connecting to an outside; a transfer mechanism applicable to carry the object to move through the inspection space; a shielding curtain mounted at the opening; and a driving mechanism mounted on the support frame and configured to drive the shielding curtain to move, in response to the object getting close to or moving away from the opening, so as to open or close the opening.
Abstract:
An intelligent passenger inspection channel system and method are provided. The system includes: a passenger entrance device; a first camera, provided at the passenger entrance device for capturing a first image of a number of passengers going to pass through the device; a luggage inspection device; a second camera, provided at an entrance of the luggage inspection device for capturing a second image of a luggage entering the entrance and a corresponding passenger; a third camera, provided at an exit of the luggage inspection device for capturing a third image of a luggage leaving the exit and a corresponding passenger; a personnel security inspection device; a fifth camera, provided at the personnel security inspection device for capturing a fifth image of an inspector's inspection behavior; and a sixth camera, provided in a passenger inspection channel for capturing a sixth image of an entire travel of a passenger within the channel.
Abstract:
A vehicle-mounted security inspection system includes a mobile chassis. A first cabin provided on the mobile chassis includes an object security inspection apparatus, which is used to perform a security inspection on an object. A second cabin provided on the mobile chassis includes a human body security inspection apparatus which is used to perform a security inspection on a human body. The second cabin is flexibly connected to the first cabin, so that in a first state, the second cabin is located at one end of the first cabin in a longitudinal direction of the mobile chassis, and in a second state, the second cabin is located on one side of the first cabin in the longitudinal direction of the mobile chassis.
Abstract:
A radiographic inspection device and a method of inspecting an object are provided. The radiographic inspection device includes: a support frame, where an inspection space applicable to inspect an object is formed within the support frame, and the inspection space has an entrance and an exit which are connecting to an outside; a transfer channel applicable to carry the object to move through the inspection space; a first shielding curtain and a second shielding curtain respectively mounted at the entrance and the exit; and a driving mechanism mounted on the support frame and configured to drive at least one of the first shielding curtain and the second shielding curtain to move, in response to the object getting close to or moving away from at least one of the entrance and the exit, so as to open or close the at least one of the entrance or the exit.