Generation of documents from images
    61.
    发明授权
    Generation of documents from images 有权
    从图像生成文档

    公开(公告)号:US08509563B2

    公开(公告)日:2013-08-13

    申请号:US11275908

    申请日:2006-02-02

    IPC分类号: G06K9/36 G06K9/20 H04N1/04

    CPC分类号: G06F17/2765

    摘要: A system for generating soft copy (digital) versions of hard copy documents uses images of the hard copy documents. The images may be captured using a device suitable for capturing images, like a camera phone. Once available, the images may be processed to improve their suitability for document generation. The images may then be processed to recognize and generate soft copy versions of the documents represented by the images.

    摘要翻译: 用于生成软拷贝文件的软拷贝(数字)版本的系统使用硬拷贝文件的图像。 可以使用适合于捕获图像的设备来捕获图像,例如相机手机。 一旦可用,可以处理图像以改善其对文档生成的适用性。 然后可以处理图像以识别并生成由图像表示的文档的软拷贝版本。

    INVENTORY CLUSTERING
    62.
    发明申请
    INVENTORY CLUSTERING 审中-公开
    存货集合

    公开(公告)号:US20110251889A1

    公开(公告)日:2011-10-13

    申请号:US12757634

    申请日:2010-04-09

    IPC分类号: G06Q30/00 G06Q10/00

    摘要: Various embodiments provide techniques for inventory clustering. In one or more embodiments, a set of inventory to be processed is placed into an initial cluster. The inventory can be related to impressions for advertising that are defined by values for a set of attributes. Recursive division of the initial cluster is performed by selecting an attribute and deriving child clusters that are constrained by one or more values of the attributes in accordance with one or more clustering algorithms. The clustering algorithms are configured to derive an optimum number of clusters by repetitively generating smaller child clusters and measuring a cost associated with adding additional clusters. Additional child clusters can be formed in this manner until the measured cost to add more clusters outweighs a benefit of adding more clusters.

    摘要翻译: 各种实施例提供了用于库存聚类的技术。 在一个或多个实施例中,要处理的一组库存被放置到初始集群中。 广告资源可以与由一组属性的值定义的广告展示相关联。 通过选择属性并根据一个或多个聚类算法导出由一个或多个属性值约束的子簇来执行初始簇的递归分割。 聚类算法被配置为通过重复地生成较小的子簇并测量与添加附加簇相关联的成本来导出最佳数量的簇。 可以以这种方式形成额外的子群集,直到添加更多簇的测量成本超过添加更多簇的好处。

    GRAPH CLUSTERING
    63.
    发明申请
    GRAPH CLUSTERING 有权
    GRAPH聚集

    公开(公告)号:US20110234594A1

    公开(公告)日:2011-09-29

    申请号:US12748014

    申请日:2010-03-26

    IPC分类号: G06T11/20

    摘要: Various embodiments provide techniques for graph clustering. In one or more embodiments, a participation graph is obtained that represents relationships between entities. An auxiliary graph is constructed based on the participation graph. The auxiliary graph may be constructed such that the auxiliary graph is less dense than the participation graph and is therefore computationally less complex to analyze. Clusters in the auxiliary graph are determined by solving an objective function defined for the auxiliary graph. Clusters determined for the auxiliary graph may then be utilized to ascertain clusters in the participation graph that solve a related objective function defined for the participation graph.

    摘要翻译: 各种实施例提供了用于图形聚类的技术。 在一个或多个实施例中,获得表示实体之间的关系的参与图。 基于参与图构建辅助图。 辅助图可以被构造成使得辅助图不如参与图密度小,因此在计算上不太分析复杂。 辅助图中的簇通过求解辅助图定义的目标函数来确定。 然后可以使用为辅助图确定的群集来确定参与图中的聚类,以解决为参与图定义的相关目标函数。

    Credit-based peer-to-peer storage
    64.
    发明授权
    Credit-based peer-to-peer storage 失效
    基于信用的对等存储

    公开(公告)号:US07707248B2

    公开(公告)日:2010-04-27

    申请号:US11768189

    申请日:2007-06-25

    IPC分类号: G06F15/16

    摘要: Distributed computing devices comprising a system for sharing computing resources can provide shared computing resources to users having sufficient resource credits. A user can earn resource credits by reliably offering a computing resource for sharing for a predetermined amount of time. The conversion rate between the amount of credits awarded, and the computing resources provided by a user can be varied to maintain balance within the system, and to foster beneficial user behavior. Once earned, the credits can be used to fund the user's account, joint accounts which include the user and others, or others' accounts that do not provide any access to the user. Computing resources can be exchanged on a peer-to-peer basis, though a centralized mechanism can link relevant peers together. To verify integrity, and protect against maliciousness, offered resources can be periodically tested.

    摘要翻译: 包括用于共享计算资源的系统的分布式计算设备可以向具有足够资源信用的用户提供共享的计算资源。 用户可以通过可靠地提供用于共享预定时间量的计算资源来获得资源信用。 可以改变授予的学分数量和用户提供的计算资源之间的转换率,以保持系统内的平衡,并促进有益的用户行为。 一旦获得,信用额可以用于为用户的帐户,包括用户和其他人的联合账户或不提供对用户的访问的其他账户提供资金。 计算资源可以在对等的基础上交换,尽管集中的机制可以将相关的对等体链接在一起。 为了验证完整性,并防止恶意,提供的资源可以定期测试。

    STRUCTURED AND UNSTRUCTURED DATA MODELS
    66.
    发明申请
    STRUCTURED AND UNSTRUCTURED DATA MODELS 审中-公开
    结构化和非结构化数据模型

    公开(公告)号:US20090327230A1

    公开(公告)日:2009-12-31

    申请号:US12147574

    申请日:2008-06-27

    IPC分类号: G06F17/30

    CPC分类号: G06F16/40

    摘要: Structured and/or unstructured data is processed with the aid of a data model. The data model provides a conceptual description of source content that can be generated or otherwise modified automatically as a function of data, models, and/or structure associated with the data. Both structured and unstructured data can be viewed in terms of high-level content rather than a lower level physical model. Among other things, this view can be employed to aid search as well as data sharing.

    摘要翻译: 借助于数据模型处理结构化和/或非结构化数据。 数据模型提供了可以根据与数据相关联的数据,模型和/或结构的函数自动生成或以其他方式修改的源内容的概念描述。 结构化和非结构化数据都可以从高级内容而不是较低级别的物理模型来查看。 除此之外,这种观点可以用于帮助搜索和数据共享。

    Processing machine learning techniques using a graphics processing unit
    67.
    发明授权
    Processing machine learning techniques using a graphics processing unit 有权
    处理机器学习技术使用图形处理单元

    公开(公告)号:US07548892B2

    公开(公告)日:2009-06-16

    申请号:US11748474

    申请日:2007-05-14

    IPC分类号: G06F15/18 G06K9/62

    CPC分类号: G06N99/005 G06N3/08

    摘要: A system and method for processing machine learning techniques (such as neural networks) and other non-graphics applications using a graphics processing unit (GPU) to accelerate and optimize the processing. The system and method transfers an architecture that can be used for a wide variety of machine learning techniques from the CPU to the GPU. The transfer of processing to the GPU is accomplished using several novel techniques that overcome the limitations and work well within the framework of the GPU architecture. With these limitations overcome, machine learning techniques are particularly well suited for processing on the GPU because the GPU is typically much more powerful than the typical CPU. Moreover, similar to graphics processing, processing of machine learning techniques involves problems with solving non-trivial solutions and large amounts of data.

    摘要翻译: 一种用于处理机器学习技术(例如神经网络)和使用图形处理单元(GPU)来加速和优化处理的其他非图形应用的系统和方法。 该系统和方法传输一种可用于从CPU到GPU的各种机器学习技术的架构。 处理到GPU的转移是通过克服这些限制并在GPU架构的框架内工作良好的几种新技术实现的。 由于克服了这些限制,机器学习技术特别适用于GPU上的处理,因为GPU通常比典型的CPU功能更强大。 此外,类似于图形处理,机器学习技术的处理涉及解决非平凡解决方案和大量数据的问题。